Feedback: api-reference-lemur-question-answer
Documentation Feedback
Section titled “Documentation Feedback”Original URL: https://www.assemblyai.com/docs/api-reference/lemur/question-answer
Category: api-reference
Generated: 05/08/2025, 4:32:15 pm
Claude Sonnet 4 Feedback
Section titled “Claude Sonnet 4 Feedback”Generated: 05/08/2025, 4:32:14 pm
Technical Documentation Analysis: LeMUR Question-Answer API
Section titled “Technical Documentation Analysis: LeMUR Question-Answer API”Overall Assessment
Section titled “Overall Assessment”This documentation has significant gaps that would frustrate developers trying to implement the API. While it shows the endpoint and basic usage, it lacks essential technical details and has structural issues.
Critical Missing Information
Section titled “Critical Missing Information”1. Request Body Specification
Section titled “1. Request Body Specification”Issue: No formal schema or parameter documentation Impact: Developers can’t understand what parameters are required vs. optional
Recommendation: Add a complete request body schema:
## Request Body Parameters
| Parameter | Type | Required | Description ||-----------|------|----------|-------------|| `final_model` | string | Yes | AI model to use (e.g., "anthropic/claude-sonnet-4-20250514") || `questions` | array | Yes | Array of question objects (max 10) || `transcript_ids` | array | Conditional | Required if not using `context`. Array of transcript IDs || `context` | string | Conditional | Required if not using `transcript_ids`. Custom context text || `max_output_size` | integer | No | Maximum response length (default: 2000, max: 100000) || `temperature` | number | No | Response creativity (0.0-1.0, default: 0.0) |2. Response Body Details
Section titled “2. Response Body Details”Issue: Only HTTP status codes listed, no response structure Impact: Developers don’t know what data they’ll receive
Recommendation: Add response schema and examples:
## Response Schema
### Success Response (200)```json{ "response": [ { "question": "Where are there wildfires?", "answer": "US, CA" } ], "request_id": "abc123-def456", "usage": { "input_tokens": 1234, "output_tokens": 567 }}Error Response Examples
Section titled “Error Response Examples”{ "error": "Invalid transcript_id", "code": "invalid_request"}Structural Issues
Section titled “Structural Issues”1. Redundant Examples
Section titled “1. Redundant Examples”Issue: 8 nearly identical curl examples with placeholder values Impact: Clutters documentation without adding value
Recommendation: Replace with 2-3 meaningful examples:
- Basic question with transcript_ids
- Multiple questions with answer_options
- Using custom context instead of transcript_ids
2. Missing Prerequisites Section
Section titled “2. Missing Prerequisites Section”Issue: No guidance on getting transcript IDs or API keys Impact: New users can’t get started
Recommendation: Add prerequisites:
## Prerequisites
1. **API Key**: Get your API key from the [AssemblyAI Dashboard](https://app.assemblyai.com/)2. **Transcript ID**: First transcribe audio using the [Transcription API](/api-reference/transcription)3. **Authentication**: Include your API key in the Authorization headerContent Clarity Issues
Section titled “Content Clarity Issues”1. Parameter Relationships
Section titled “1. Parameter Relationships”Issue: Unclear when to use transcript_ids vs context
Impact: Users don’t understand the two different usage patterns
Recommendation: Add clear explanation:
## Usage Patterns
### Pattern 1: Analyze Existing TranscriptsUse `transcript_ids` to ask questions about previously transcribed audio:```json{ "transcript_ids": ["transcript_123"], "questions": [{"question": "What was discussed?"}]}Pattern 2: Analyze Custom Text
Section titled “Pattern 2: Analyze Custom Text”Use context to ask questions about any text content:
{ "context": "Meeting notes: We discussed the Q4 budget...", "questions": [{"question": "What budget items were mentioned?"}]}2. Question Object Structure
Section titled “2. Question Object Structure”Issue: Question object parameters not documented
Impact: Users don’t understand answer_format and answer_options
Recommendation: Document question object properties:
### Question Object Parameters
| Parameter | Type | Required | Description ||-----------|------|----------|-------------|| `question` | string | Yes | The question to ask || `answer_format` | string | No | Desired format for the answer (e.g., "List of countries in ISO format") || `answer_options` | array | No | Limit responses to specific options |User Experience Improvements
Section titled “User Experience Improvements”1. Add Quick Start Guide
Section titled “1. Add Quick Start Guide”## Quick Start
1. **Get a transcript ID** by transcribing audio2. **Ask a question** about the transcript:
```bashcurl -X POST https://api.assemblyai.com/lemur/v3/generate/question-answer \ -H "Authorization: YOUR_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "transcript_ids": ["your_transcript_id"], "questions": [{"question": "What are the main topics discussed?"}] }'2. Add Common Use Cases
Section titled “2. Add Common Use Cases”## Common Use Cases
- **Meeting Analysis**: "Were all agenda items covered?"- **Call Scoring**: "How satisfied was the customer (1-10)?"- **Content Extraction**: "What action items were mentioned?"- **Sentiment Analysis**: "What was the overall tone?"3. Add Error Handling Guide
Section titled “3. Add Error Handling Guide”## Error Handling
| Status Code | Common Causes | Solutions ||-------------|---------------|-----------|| 400 | Invalid transcript_id, missing required fields | Verify transcript exists and request format || 401 | Invalid API key | Check API key in Authorization header || 429 | Rate limit exceeded | Implement exponential backoff |Technical Accuracy Issues
Section titled “Technical Accuracy Issues”1. Authentication Format
Section titled “1. Authentication Format”Issue: Shows Authorization: <apiKey>
Impact: Unclear if this needs “Bearer” prefix or specific format
Recommendation: Clarify: Authorization: YOUR_API_KEY (no Bearer prefix needed)
2. Model Availability
Section titled “2. Model Availability”Issue: No list of available models Impact: Users don’t know their options
Recommendation: Add supported models list or link to models documentation
Priority Recommendations
Section titled “Priority Recommendations”- HIGH: Add complete request/response schemas
- HIGH: Replace redundant examples with meaningful ones
- HIGH: Add prerequisites and quick start section
- MEDIUM: Document question object parameters
- MEDIUM: Add error handling guidance
- LOW: Add use cases and best practices
These improvements would transform this from a basic endpoint reference into comprehensive, user-friendly documentation that enables successful implementation.