Skip to content

Feedback: audio-intelligence-content-moderation

Original URL: https://www.assemblyai.com/docs/audio-intelligence/content-moderation
Category: audio-intelligence
Generated: 05/08/2025, 4:33:41 pm


Generated: 05/08/2025, 4:33:40 pm

Technical Documentation Analysis: AssemblyAI Content Moderation

Section titled “Technical Documentation Analysis: AssemblyAI Content Moderation”

This documentation provides comprehensive code examples and covers multiple programming languages, but it suffers from several structural and clarity issues that could significantly impact user experience.

Problem: The documentation lacks fundamental details users need before implementation.

Missing Information:

  • What types of content are actually detected? The supported labels table is buried at the end
  • Processing time expectations beyond the brief FAQ mention
  • Pricing/usage limits for this feature
  • Audio format requirements and limitations
  • Minimum audio quality thresholds
  • Maximum file size limits

Recommendation: Add a “Before You Start” section with:

## Before You Start
### Requirements
- Audio files must be in supported formats (MP3, WAV, FLAC, etc.)
- Minimum audio quality: 8kHz sample rate
- Maximum file size: 5GB
- Clear speech audio (background music/noise may affect accuracy)
### What Content is Detected
Content Moderation identifies 15+ categories including profanity, hate speech, violence, drugs, and more. See [Supported Labels](#supported-labels) for the complete list.
### Processing Time
- Typical processing: 15-30% of audio duration
- Real-time applications: Segments processed in <1 second

Problem: Critical information is poorly organized, making it hard to find key details.

Issues:

  • Supported labels table is at the very end (should be near the beginning)
  • No clear section on response interpretation
  • Confidence threshold explanation comes after complex code examples

Recommended Structure:

# Content Moderation
## Overview
[Brief description + use cases]
## Supported Content Types
[Move labels table here]
## Quick Start
[Simplest possible example]
## Configuration Options
[Confidence threshold, etc.]
## Understanding Results
[Response interpretation guide]
## Complete Examples
[Full code examples by language]
## API Reference
[Technical details]

Problem: Users won’t understand how to interpret the complex response structure.

Current Issue: The example output shows numbers like 0.8141 - 0.4014 but doesn’t explain what these mean in practical terms.

Solution: Add a dedicated section:

## Understanding Your Results
### Confidence Scores
- **0.9+**: Very likely contains this content type
- **0.7-0.9**: Likely contains this content type
- **0.5-0.7**: Possibly contains this content type
- **Below 0.5**: Unlikely (filtered out by default)
### Severity Scores
- **0.0-0.3**: Low severity - mild references
- **0.3-0.7**: Medium severity - clear discussion
- **0.7-1.0**: High severity - explicit or intense content
### Example Interpretation
```json
"disasters - 0.8141 - 0.4014"

This means: 81% confident the segment discusses disasters with low-medium severity (0.4).

### 4. Inadequate Error Handling
**Problem**: Code examples have minimal error handling guidance.
**Current State**: Only shows basic status checking
**Needed**: Comprehensive error scenarios and handling
**Add Section**:
```markdown
## Error Handling
### Common Issues
- `invalid_audio`: Audio file corrupted or unsupported format
- `audio_too_short`: Minimum 0.5 seconds of speech required
- `content_safety_unavailable`: Model temporarily unavailable
### Implementation Example
```python
if transcript.status == 'error':
error_code = transcript.error
if 'invalid_audio' in error_code:
# Handle audio format issues
elif 'audio_too_short' in error_code:
# Handle insufficient audio

Problems:

  • No guidance on choosing confidence thresholds
  • No examples of common use cases
  • No performance optimization tips

Add Sections:

## Choosing the Right Confidence Threshold
### Recommended Settings by Use Case
- **Content moderation for public platforms**: 25-40% (catch more potential issues)
- **Internal content review**: 50-60% (balanced approach)
- **High-precision filtering**: 70%+ (fewer false positives)
## Common Use Cases
### Example: Podcast Content Screening
```python
# Screen for brand-safe content
config = aai.TranscriptionConfig(
content_safety=True,
content_safety_confidence=30 # Lower threshold for brand safety
)
# Focus on high-risk categories
risk_categories = ['hate_speech', 'profanity', 'nsfw']
for result in transcript.content_safety.results:
for label in result.labels:
if label.label in risk_categories and label.confidence > 0.5:
print(f"⚠️ Found {label.label} at {result.timestamp.start}ms")
  • Use streaming for long audio files
  • Process in segments for real-time applications
  • Cache results for repeated analysis
  • Ensure clear audio quality
  • Use appropriate confidence thresholds
  • Review edge cases manually
### 6. Code Example Improvements
**Current Issues**:
- Examples are too complex for getting started
- Missing practical filtering examples
- No guidance on handling results programmatically
**Recommendations**:
**Add Simple Example First**:
```python
## Simple Example
```python
import assemblyai as aai
aai.settings.api_key = "YOUR_API_KEY"
# Basic content moderation
transcript = aai.Transcriber().transcribe(
"audio.mp3",
config=aai.TranscriptionConfig(content_safety=True)
)
# Check if any sensitive content was found
if transcript.content_safety.results:
print(f"⚠️ Found {len(transcript.content_safety.results)} flagged segments")
for result in transcript.content_safety.results:
print(f"- {result.labels[0].label} at {result.timestamp.start//1000}s")
else:
print("✅ No sensitive content detected")

Add Section:

## Integration Patterns
### Batch Processing
```python
def moderate_audio_files(file_paths):
results = {}
for file_path in file_paths:
transcript = transcriber.transcribe(file_path, config)
results[file_path] = {
'safe': len(transcript.content_safety.results) == 0,
'issues': [r.labels[0].label for r in transcript.content_safety.results]
}
return results
def real_time_content_check(audio_chunk):
# Process small chunks for real-time feedback
if is_sensitive_content(audio_chunk):
return {"action": "flag", "confidence": 0.85}
return {"action": "allow"}
  1. Immediate: Move supported labels table to the top
  2. Immediate: Add “Understanding Results” section with clear explanations
  3. High: Create simple example before complex ones
  4. High: Add error handling guidance
  5. Medium: Reorganize entire structure as outlined above
  6. Medium: Add use case examples and integration patterns

These changes would transform this from a code-heavy reference into user-friendly documentation that guides users from concept to implementation.