Feedback: guides-automatic-language-detection-route-nano-model
Documentation Feedback
Section titled “Documentation Feedback”Original URL: https://www.assemblyai.com/docs/guides/automatic-language-detection-route-nano-model
Category: guides
Generated: 05/08/2025, 4:43:20 pm
Claude Sonnet 4 Feedback
Section titled “Claude Sonnet 4 Feedback”Generated: 05/08/2025, 4:43:19 pm
Technical Documentation Analysis & Recommendations
Section titled “Technical Documentation Analysis & Recommendations”Overall Assessment
Section titled “Overall Assessment”This documentation provides a useful workflow but has several clarity, completeness, and user experience issues that need addressing.
Critical Issues & Recommendations
Section titled “Critical Issues & Recommendations”1. Missing Information
Section titled “1. Missing Information”Problem: Key details are absent or unclear.
Specific Issues:
- No explanation of what “language confidence” actually means
- Missing list of 17 Universal vs 99 Nano supported languages
- No error handling for non-language-related failures
- Billing/cost implications not clearly explained
- No mention of performance differences between models
Recommendations:
## Language Model Comparison
| Feature | Universal Model | Nano Model ||---------|----------------|------------|| Languages Supported | 17 | 99 || Cost | Higher | Lower || Accuracy | Higher for supported languages | Good for all languages || Processing Speed | Faster | Standard |
### Supported Languages- **Universal**: [link to complete list]- **Nano**: [link to complete list]2. Unclear Explanations
Section titled “2. Unclear Explanations”Problem: Technical concepts lack proper context.
Issues:
- “language_confidence_threshold” concept introduced without explanation
- Workflow logic is confusing (why does it “error out”?)
- The relationship between confidence and model selection is unclear
Improved Explanation:
## How Language Confidence Works
Language confidence represents how certain the automatic language detection is about the identified language (0.0 = no confidence, 1.0 = completely certain).
When you set a `language_confidence_threshold`:- **Above threshold**: Transcription proceeds with Universal model- **Below threshold**: Request fails with error containing detected language- **Your code**: Catches error and retries with Nano model using detected language3. Better Examples Needed
Section titled “3. Better Examples Needed”Problem: Current example lacks real-world context and error handling.
Improved Complete Example:
import assemblyai as aaiimport reimport logging
# Setup logging for better debugginglogging.basicConfig(level=logging.INFO)logger = logging.getLogger(__name__)
def transcribe_with_fallback(audio_url, confidence_threshold=0.8): """ Transcribe audio with automatic fallback to Nano model if language confidence is too low for Universal model.
Args: audio_url (str): URL or local path to audio file confidence_threshold (float): Minimum confidence (0.0-1.0)
Returns: dict: Transcription result with metadata """ aai.settings.api_key = "YOUR_API_KEY" transcriber = aai.Transcriber()
# First attempt: Universal model with language detection universal_config = aai.TranscriptionConfig( speech_model=aai.SpeechModel.universal, language_detection=True, language_confidence_threshold=confidence_threshold )
try: logger.info("Attempting transcription with Universal model...") transcript = transcriber.transcribe(audio_url, universal_config)
if transcript.error: raise Exception(transcript.error)
return { 'text': transcript.text, 'model_used': 'universal', 'language': transcript.language_code, 'confidence': getattr(transcript, 'language_confidence', None) }
except Exception as e: error_msg = str(e)
# Check if this is a language confidence error if "below the requested confidence threshold" in error_msg: logger.info("Language confidence too low, falling back to Nano model...")
# Extract detected language from error message match = re.search(r"detected language '(\w+)'", error_msg) if not match: raise Exception(f"Could not parse language from error: {error_msg}")
detected_language = match.group(1) logger.info(f"Detected language: {detected_language}")
# Retry with Nano model nano_config = aai.TranscriptionConfig( speech_model=aai.SpeechModel.nano, language_code=detected_language )
transcript = transcriber.transcribe(audio_url, nano_config)
if transcript.error: raise Exception(f"Nano model transcription failed: {transcript.error}")
return { 'text': transcript.text, 'model_used': 'nano', 'language': detected_language, 'fallback_reason': 'low_language_confidence' } else: # Re-raise non-language-confidence errors raise Exception(f"Transcription failed: {error_msg}")
# Usage examplesif __name__ == "__main__": # Example 1: English audio (likely to use Universal) try: result = transcribe_with_fallback("https://example.com/english-audio.mp3") print(f"Transcription: {result['text']}") print(f"Model used: {result['model_used']}") except Exception as e: print(f"Error: {e}")
# Example 2: Less common language (likely to fallback to Nano) try: result = transcribe_with_fallback("https://example.com/swedish-audio.mp3") print(f"Transcription: {result['text']}") print(f"Model used: {result['model_used']}") except Exception as e: print(f"Error: {e}")4. Improved Structure
Section titled “4. Improved Structure”Current structure issues:
- Information scattered without logical flow
- No clear sections for different user needs
- Missing troubleshooting section
Recommended Structure:
# Route to Nano Speech Model for Low Language Confidence
## OverviewBrief explanation of the workflow and when to use it
## Prerequisites- API key setup- Supported audio formats- SDK installation
## Understanding the Models- Universal vs Nano comparison table- Language support details- Cost implications
## Implementation Guide### Basic Setup### Error Handling Strategy### Complete Working Example
## Troubleshooting### Common Issues### Error Message Reference### Performance Optimization
## Best Practices## Related Guides5. User Pain Points
Section titled “5. User Pain Points”Major Pain Points Identified:
-
Error message parsing is fragile - relies on string matching
Solution: Request a structured error response or provide an SDK method:
# Suggest this API improvementif transcript.error and transcript.error.type == 'LANGUAGE_CONFIDENCE_LOW':detected_language = transcript.error.detected_languageconfidence = transcript.error.confidence -
No guidance on choosing confidence threshold
Solution: Add a decision matrix:
## Choosing Your Confidence Threshold| Threshold | Use Case | Trade-offs ||-----------|----------|------------|| 0.9-1.0 | High accuracy critical | More fallbacks to Nano || 0.7-0.9 | Balanced approach | Recommended for most use cases || 0.5-0.7 | Minimize fallbacks | May get lower accuracy | -
No cost estimation
Solution: Add cost calculator or examples:
## Cost Implications- Universal model failure: No charge- Nano fallback: Lower rate than Universal- Estimated savings: 30-50% when fallback is used
Additional Recommendations
Section titled “Additional Recommendations”Add Interactive Elements
Section titled “Add Interactive Elements”## Try It YourselfUse our [interactive demo](link) to test different confidence thresholds with sample audio files.Include Monitoring Guidance
Section titled “Include Monitoring Guidance”# Add metrics trackingdef track_model_usage(result): """Track which model was used for analytics""" metrics = { 'model_used': result['model_used'], 'language': result['language'], 'timestamp': datetime.now().isoformat() } # Log to your analytics systemAdd Related Documentation Links
Section titled “Add Related Documentation Links”## See Also- [
---