Skip to content

Feedback: guides-automatic-language-detection-separate

Original URL: https://www.assemblyai.com/docs/guides/automatic-language-detection-separate
Category: guides
Generated: 05/08/2025, 4:43:17 pm


Generated: 05/08/2025, 4:43:16 pm

Technical Documentation Analysis & Feedback

Section titled “Technical Documentation Analysis & Feedback”

This documentation provides a functional guide but has several gaps that could frustrate users and impact adoption. Here’s my detailed analysis with actionable improvements:


Problem: No error handling for API failures, network issues, or invalid responses.

Fix: Add comprehensive error handling:

def detect_language(audio_url):
try:
config = aai.TranscriptionConfig(
audio_end_at=60000,
language_detection=True,
speech_model=aai.SpeechModel.nano,
)
transcript = transcriber.transcribe(audio_url, config=config)
# Check if transcription was successful
if transcript.status == aai.TranscriptStatus.error:
raise Exception(f"Language detection failed: {transcript.error}")
return transcript.json_response["language_code"]
except Exception as e:
print(f"Error detecting language: {e}")
return None # or fallback to default language

Problem: Assumes users know how to handle API keys securely.

Fix: Add security section:

## Prerequisites & Setup
### Required
- Python 3.7+
- AssemblyAI account ([sign up free](https://assemblyai.com/dashboard/signup))
- API key from your dashboard
### Security Best Practices
**⚠️ Never hardcode API keys in production code.**
Use environment variables:
```bash
export ASSEMBLYAI_API_KEY="your_api_key_here"
import os
import assemblyai as aai
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
if not aai.settings.api_key:
raise ValueError("Please set ASSEMBLYAI_API_KEY environment variable")

Current: Users don’t know what to expect.

Add:

## Expected Output
Running the complete example will produce output like:

Identified language: pt Transcript: Olá, bem-vindos ao nosso podcast sobre tecnologia. Hoje vamos falar sobre…

Identified language: es
Transcript: Hola y bienvenidos a nuestro programa. En el episodio de hoy discutiremos…

Identified language: sl Transcript: Živjo, danes se pogovarjamo z Luko Dončićem o njegovi karieri…

Identified language: en Transcript: Today we’ll discuss the five most common sports injuries that athletes face…

### 4. **Add Cost Calculator**
**Current**: Mentions cost but no practical guidance.
**Add**:
```markdown
## Cost Estimation
### Language Detection Step
- **Rate**: $0.002 per file (first 60 seconds only)
- **Example**: 100 files = $0.20
### Full Transcription Costs
- **Universal Model**: $0.37/hour for supported languages
- **Nano Model**: $0.15/hour for all other languages
### Total Cost Calculator
```python
def estimate_cost(audio_duration_minutes, num_files, language_code):
detection_cost = num_files * 0.002
transcription_rate = 0.37 if language_code in supported_languages_for_universal else 0.15
transcription_cost = (audio_duration_minutes / 60) * transcription_rate * num_files
return detection_cost + transcription_cost
# Example: 100 files, 10 minutes each, Spanish content
total_cost = estimate_cost(10, 100, "es")
print(f"Estimated cost: ${total_cost:.2f}")

Problem: Current example processes files sequentially.

Add:

import asyncio
from concurrent.futures import ThreadPoolExecutor
def process_file_batch(audio_urls, max_workers=5):
"""Process multiple files concurrently for better performance."""
def process_single_file(audio_url):
try:
language_code = detect_language(audio_url)
if language_code:
transcript = transcribe_file(audio_url, language_code)
return {
"url": audio_url,
"language": language_code,
"transcript": transcript.text,
"model_used": "universal" if language_code in supported_languages_for_universal else "nano",
"status": "success"
}
except Exception as e:
return {
"url": audio_url,
"error": str(e),
"status": "failed"
}
with ThreadPoolExecutor(max_workers=max_workers) as executor:
results = list(executor.map(process_single_file, audio_urls))
return results
def detect_language_with_fallback(audio_url, fallback_language="en"):
"""Detect language with fallback to default if detection fails."""
try:
detected = detect_language(audio_url)
if detected and detected != "unknown":
return detected
except Exception as e:
print(f"Language detection failed: {e}")
print(f"Falling back to default language: {fallback_language}")
return fallback_language

## Table of Contents
1. [When to Use This Approach](#when-to-use)
2. [Prerequisites & Setup](#prerequisites)
3. [Step-by-Step Implementation](#implementation)
4. [Cost Estimation](#cost-estimation)
5. [Error Handling](#error-handling)
6. [Performance Optimization](#performance)
7. [Troubleshooting](#troubleshooting)
## When to Use This Approach
**✅ Use separate language detection when:**
- Processing files in unknown languages
- Need cost optimization for mixed-language datasets
- Want to route different languages to appropriate models
**❌ Don't use when:**
- You already know the source language
- Processing short audio clips (< 60 seconds)
- Need real-time transcription
## Troubleshooting
### Common Issues
| Problem | Cause | Solution |
|---------|-------|----------|
| `KeyError: 'language_code'` | Language detection failed | Check audio quality, add error handling |
| `403 Forbidden` | Invalid API key | Verify API key in dashboard |
| `TimeoutError` | Large file processing | Implement retry logic with exponential backoff |
| Incorrect language detected | Poor audio quality | Use longer sample (increase `audio_end_at`) |
### Debug Mode
```python
# Enable detailed logging
import logging
logging.basicConfig(level=logging.DEBUG)
# Add debug info to functions
def detect_language_debug(audio_url):
print(f"Processing: {audio_url}")
config = aai.TranscriptionConfig(
audio_end_at=60000,
language_detection=True,
speech_model=aai.SpeechModel.nano,
)
transcript = transcriber.transcribe(audio_url, config=config)
print(f"API Response: {transcript.json_response}")
return transcript.json_response.get("language_code", "unknown")

  1. Fix the typo: “the file then gets then routed” → “the file then gets routed”
  2. Add links to related docs in the introduction
  3. Include audio format requirements (supported formats, size limits)
  4. Add a “Next Steps” section linking to advanced features
  5. Include performance benchmarks (processing time expectations)