Skip to content

Feedback: guides-automatic-language-detection-workflow

Original URL: https://www.assemblyai.com/docs/guides/automatic-language-detection-workflow
Category: guides
Generated: 05/08/2025, 4:43:15 pm


Generated: 05/08/2025, 4:43:14 pm

Technical Documentation Analysis: Automatic Language Detection Workflow

Section titled “Technical Documentation Analysis: Automatic Language Detection Workflow”

This documentation provides a clear technical workflow but has several areas for improvement in completeness, error handling, and user experience.

Issue: No guidance on handling failures or edge cases.

Recommendations:

def detect_language(audio_url):
try:
config = aai.TranscriptionConfig(
audio_end_at=60000,
language_detection=True,
speech_model=aai.SpeechModel.nano,
)
transcript = transcriber.transcribe(audio_url, config=config)
# Check if transcription was successful
if transcript.status == aai.TranscriptStatus.error:
raise Exception(f"Language detection failed: {transcript.error}")
language_code = transcript.json_response.get("language_code")
if not language_code:
raise Exception("No language code returned")
return language_code
except Exception as e:
print(f"Error detecting language for {audio_url}: {e}")
return "en" # Default fallback

Issue: Mentions $0.002 cost but lacks complete pricing breakdown.

Add section:

## Cost Breakdown
- Nano ALD (60 seconds): $0.002 per detection
- Universal transcription: $0.62 per hour
- Nano transcription: $0.10 per hour
- Total workflow cost = $0.002 + (audio_duration_hours × model_rate)

Issue: Shows hardcoded API key without security guidance.

Replace with:

import os
import assemblyai as aai
# Secure API key handling
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
if not aai.settings.api_key:
raise ValueError("Please set ASSEMBLYAI_API_KEY environment variable")
## Prerequisites
- Python 3.7 or higher
- AssemblyAI API key (get one [here](https://www.assemblyai.com/dashboard/signup))
- Audio files in supported formats (MP3, WAV, M4A, etc.)
- Basic understanding of Python async programming (optional for advanced usage)

Current flow jumps directly into code. Suggest:

  1. Overview (what this workflow does)
  2. When to use this workflow vs alternatives
  3. Prerequisites
  4. Step-by-step implementation
  5. Advanced configuration
  6. Troubleshooting
class LanguageDetectionWorkflow:
def __init__(self, api_key=None):
self.transcriber = aai.Transcriber()
if api_key:
aai.settings.api_key = api_key
def detect_language(self, audio_url, detection_duration=60000):
"""
Detect language from audio file.
Args:
audio_url (str): URL or path to audio file
detection_duration (int): Duration in ms for detection (default: 60000)
Returns:
str: Detected language code or 'en' as fallback
"""
# Implementation with error handling
def transcribe_with_detection(self, audio_url, enable_audio_intelligence=False):
"""Complete workflow with language detection and transcription."""
# Implementation
def process_multiple_files(audio_urls, max_concurrent=3):
"""Process multiple files with rate limiting."""
import asyncio
from concurrent.futures import ThreadPoolExecutor
def process_single_file(url):
language_code = detect_language(url)
return transcribe_file(url, language_code)
with ThreadPoolExecutor(max_workers=max_concurrent) as executor:
results = list(executor.map(process_single_file, audio_urls))
return results

Add section explaining:

  • Supported file formats
  • File size limits
  • Duration limits
  • Quality recommendations
## Language Detection Accuracy
- Confidence scores and how to interpret them
- When detection might fail (very short audio, poor quality, mixed languages)
- Fallback strategies for low-confidence detection

Expand explanation:

## Model Selection Decision Tree
1. **Language detected and supported by Universal** → Use Universal
2. **Language detected but not supported by Universal** → Use Nano
3. **Language detection fails** → Default to English + Universal
4. **Low confidence detection** → Prompt user or use fallback logic
def validate_audio_url(url):
"""Validate audio URL/file exists and is accessible."""
# Implementation
def estimate_cost(audio_duration_minutes, detected_language):
"""Estimate total cost for the workflow."""
# Implementation
def transcribe_with_progress(audio_url):
"""Transcribe with progress updates."""
print("🔍 Detecting language...")
language_code = detect_language(audio_url)
print(f"✅ Language detected: {language_code}")
print("📝 Starting transcription...")
transcript = transcribe_file(audio_url, language_code)
print("✅ Transcription complete!")
return transcript
# Add configuration class
class WorkflowConfig:
def __init__(
self,
detection_duration=60000,
enable_audio_intelligence=False,
fallback_language="en",
confidence_threshold=0.8
):
self.detection_duration = detection_duration
self.enable_audio_intelligence = enable_audio_intelligence
self.fallback_language = fallback_language
self.confidence_threshold = confidence_threshold
  • What happens if language detection is wrong?
  • Can I override the detected language?
  • How accurate is the 60-second detection?
  • What if my audio contains multiple languages?
  • Expected processing times
  • Rate limits
  • Optimization tips for large files
  • Flask/FastAPI web service
  • Background job processing
  • Real-time audio processing

This enhanced documentation would significantly improve user success rates and reduce support requests.