Skip to content

Feedback: guides-identifying-highlights-in-audio-or-video-files

Original URL: https://www.assemblyai.com/docs/guides/identifying-highlights-in-audio-or-video-files
Category: guides
Generated: 05/08/2025, 4:40:13 pm


Generated: 05/08/2025, 4:40:12 pm

Technical Documentation Analysis & Feedback

Section titled “Technical Documentation Analysis & Feedback”

This documentation provides a comprehensive step-by-step guide for implementing audio highlights, but has several areas that need improvement for better user experience and clarity.

1. Missing Prerequisites & Setup Information

Section titled “1. Missing Prerequisites & Setup Information”

Issues:

  • No clear explanation of what an API key looks like or where exactly to find it
  • Missing dependency installation instructions for most languages
  • No mention of file size limits or supported audio formats

Recommendations:

## Prerequisites
Before starting, ensure you have:
- An AssemblyAI account ([sign up for free](https://assemblyai.com/dashboard/signup))
- Your API key (found in your [dashboard](https://assemblyai.com/dashboard) - looks like `abc123...`)
- Audio/video file in supported format (MP3, WAV, MP4, etc.)
- File size under 500MB (for larger files, see [our guide on handling large files])
### Supported File Formats
- Audio: MP3, WAV, FLAC, AAC, OGG
- Video: MP4, MOV, AVI, WMV
- Maximum file size: 500MB

Issues:

  • Step 3 shows different actions across language tabs (config creation vs file upload)
  • SDK implementation is dramatically simpler but this isn’t explained
  • Steps don’t align logically between SDK and API approaches

Recommendations:

  • Split into two separate guides: “Using Python SDK” and “Using REST API”
  • Or clearly label sections: “Option A: SDK (Recommended)” and “Option B: Direct API”
  • Add a comparison table showing pros/cons of each approach

Issues:

  • Missing import statements in several languages
  • Hardcoded file paths without explanation
  • No error handling in most examples
  • Missing complete, runnable examples

Recommendations:

# Complete Python SDK example
import assemblyai as aai
# Set your API key (get it from https://assemblyai.com/dashboard)
aai.settings.api_key = "your_api_key_here"
def analyze_highlights(audio_url_or_path):
"""
Analyze audio file and extract key highlights
Args:
audio_url_or_path: URL or local file path to audio/video
Returns:
List of highlight objects with text, count, rank, and timestamps
"""
try:
# Configure transcription with highlights enabled
config = aai.TranscriptionConfig(auto_highlights=True)
transcriber = aai.Transcriber(config=config)
# Transcribe and extract highlights
transcript = transcriber.transcribe(audio_url_or_path)
if transcript.status == aai.TranscriptStatus.error:
print(f"Transcription failed: {transcript.error}")
return None
return transcript.auto_highlights.results
except Exception as e:
print(f"Error: {e}")
return None
# Example usage
if __name__ == "__main__":
highlights = analyze_highlights("https://assembly.ai/wildfires.mp3")
if highlights:
for highlight in highlights:
print(f"📍 {highlight.text}")
print(f" Count: {highlight.count} | Relevance: {highlight.rank:.2%}")
print(f" Timestamps: {[f'{t.start}ms-{t.end}ms' for t in highlight.timestamps]}")
print()

Issues:

  • JSON structure explanation comes after code implementation
  • No explanation of what rank values mean in practical terms
  • Missing information about result ordering
  • No guidance on interpreting or filtering results

Recommendations:

## Understanding Highlight Results
Each highlight contains:
| Field | Type | Description | Example |
|-------|------|-------------|---------|
| `text` | string | The identified key phrase | "project timeline" |
| `count` | integer | Times mentioned in audio | 3 |
| `rank` | float | Relevance score (0.0-1.0) | 0.87 |
| `timestamps` | array | When phrase occurs (milliseconds) | [{"start": 1200, "end": 2400}] |
### Interpreting Rank Scores
- **0.8-1.0**: Highly relevant, core topics
- **0.6-0.8**: Important supporting details
- **0.4-0.6**: Contextual information
- **0.0-0.4**: Less significant mentions
### Filtering Results
```python
# Get only high-relevance highlights
important_highlights = [h for h in highlights if h.rank > 0.7]
# Get most frequently mentioned phrases
frequent_highlights = sorted(highlights, key=lambda x: x.count, reverse=True)[:5]

5. Missing Error Handling & Troubleshooting

Section titled “5. Missing Error Handling & Troubleshooting”

Issues:

  • No guidance on common errors
  • No information about API rate limits
  • Missing validation steps

Recommendations:

## Common Issues & Troubleshooting
### Authentication Errors
```bash
Error: 401 Unauthorized

Solution: Verify your API key is correct and has proper format

Terminal window
Error: 400 Bad Request - Invalid audio file

Solutions:

  • Check file format is supported (MP3, WAV, MP4, etc.)
  • Ensure file size is under 500MB
  • Verify file isn’t corrupted

If auto_highlights_result.results is empty:

  • Audio may be too short (minimum ~30 seconds recommended)
  • Content might lack significant key phrases
  • Try with different audio content
  • Free tier: 5 concurrent requests
  • Paid plans: Higher limits available
  • If exceeded, wait and retry
### 6. **Lack of Practical Examples**
**Issues:**
- Only shows console output
- No real-world integration examples
- Missing use case implementations
**Recommendations:**
```markdown
## Real-World Examples
### Call Center Analysis
```python
def analyze_customer_call(call_recording_path):
"""Extract key topics from customer service calls"""
highlights = analyze_highlights(call_recording_path)
# Focus on high-relevance highlights
key_issues = [h for h in highlights if h.rank > 0.6]
# Generate summary
summary = {
'total_highlights': len(highlights),
'key_issues': [h.text for h in key_issues],
'most_discussed': max(highlights, key=lambda x: x.count).text if highlights else None
}
return summary
def generate_meeting_highlights(meeting_recording):
"""Extract action items and key decisions from meetings"""
highlights = analyze_highlights(meeting_recording)
# Sort by relevance
sorted_highlights = sorted(highlights, key=lambda x: x.rank, reverse=True)
return {
'top_topics': [h.text for h in sorted_highlights[:10]],
'action_items': [h for h in highlights if any(word in h.text.lower()
for word in ['action', 'todo', 'assign', 'deadline'])]
}

Current structure is confusing. Recommend:

# Identifying Highlights in Audio & Video Files
> Extract key phrases and important concepts from your audio content automatically
## Quick Start (Recommended)
[Simple SDK example with working code]
## Choose Your Implementation
- **[Python SDK](#python-sdk)** - Easiest, recommended for most users
- **[REST API](#rest-api)** - Direct API access, multiple languages
## Understanding Results
[Detailed explanation of response format]
## Advanced Usage
[Filtering, error handling, real-world examples]
## Troubleshooting
[Common issues and solutions]

Add section:

## Performance & Limitations
- **Processing Time**: ~25% of audio duration (
---