Skip to content

Feedback: guides-speaker-diarization-with-async-chunking

Original URL: https://www.assemblyai.com/docs/guides/speaker-diarization-with-async-chunking
Category: guides
Generated: 05/08/2025, 4:37:37 pm


Generated: 05/08/2025, 4:37:36 pm

Technical Documentation Analysis & Improvement Recommendations

Section titled “Technical Documentation Analysis & Improvement Recommendations”

1. Missing Prerequisites & Setup Information

Section titled “1. Missing Prerequisites & Setup Information”

Problems:

  • No system requirements specified
  • Installation commands are incomplete and potentially incorrect
  • No environment setup guidance

Solutions:

## Prerequisites
### System Requirements
- Python 3.8 or higher
- CUDA-compatible GPU (recommended for TitaNet model)
- At least 4GB RAM
- 2GB free disk space
### Installation
```bash
# Install PyTorch (check pytorch.org for your system)
pip install torch torchvision torchaudio
# Install NeMo toolkit
pip install nemo-toolkit[asr]
# Install other dependencies
pip install assemblyai pydub requests
# Install system dependencies
# On Ubuntu/Debian:
sudo apt update && sudo apt install ffmpeg
# On macOS:
brew install ffmpeg
#### 2. **Unclear Workflow and Use Case**
**Problems:**
- No explanation of what "async chunking" means
- Missing context about when to use this approach
- No overview of the complete workflow
**Solutions:**
Add this section after the introduction:
```markdown
## What is Async Chunking with Speaker Diarization?
Async chunking allows you to process multiple audio segments independently while maintaining speaker identity consistency across segments. This is useful for:
- Long recordings split into chunks for processing
- Multiple recordings from the same meeting or conversation
- Streaming audio that needs to be processed in real-time segments
### How It Works
1. **Transcribe** each audio chunk with AssemblyAI's speaker diarization
2. **Extract** the longest monologue from each speaker per chunk
3. **Compare** speaker embeddings using TitaNet across chunks
4. **Unify** speaker labels across all chunks based on voice similarity
### Workflow Overview

Audio Chunks → AssemblyAI Transcription → Speaker Monologue Extraction → TitaNet Embedding Comparison → Unified Speaker Labels → Final Transcript

Problems:

  • No explanation of required input formats
  • Missing information about transcript ID generation
  • No examples of expected outputs

Solutions:

## Input Requirements
### Audio Files
- **Format**: WAV, MP3, MP4, or other common audio formats
- **Duration**: Any length (will be processed in chunks)
- **Quality**: 16kHz or higher sampling rate recommended
- **Channels**: Mono or stereo (will be converted to mono automatically)
### AssemblyAI Transcript IDs
Before using this guide, you need to submit your audio files to AssemblyAI with speaker diarization enabled:
```python
import assemblyai as aai
aai.settings.api_key = "YOUR_API_KEY"
config = aai.TranscriptionConfig(
speaker_labels=True, # Enable speaker diarization
speakers_expected=2 # Optional: hint about number of speakers
)
transcriber = aai.Transcriber(config=config)
transcript = transcriber.transcribe("path/to/your/audio.wav")
print(f"Transcript ID: {transcript.id}")

The final output will be utterances with consistent speaker labels across all chunks:

{
0: [ # First chunk
{'speaker': 'A', 'text': 'Hello, how are you?', 'start': 100, 'end': 2000},
{'speaker': 'B', 'text': 'I am doing well, thanks!', 'start': 2100, 'end': 4000}
],
1: [ # Second chunk
{'speaker': 'A', 'text': 'That is great to hear.', 'start': 100, 'end': 1800},
{'speaker': 'B', 'text': 'How about you?', 'start': 1900, 'end': 2500}
]
}
### **Code Quality Issues**
#### 4. **Poor Error Handling and Edge Cases**
**Problems:**
- No error handling for file operations
- Missing validation for inputs
- No handling of edge cases
**Solutions:**
```python
def get_transcript(transcript_id):
"""
Retrieve a completed transcript from AssemblyAI.
Args:
transcript_id (str): The AssemblyAI transcript ID
Returns:
dict: The completed transcript data
Raises:
ValueError: If transcript_id is invalid
RuntimeError: If transcription failed or timed out
"""
if not transcript_id or not isinstance(transcript_id, str):
raise ValueError("transcript_id must be a non-empty string")
polling_endpoint = f"https://api.assemblyai.com/v2/transcript/{transcript_id}"
max_attempts = 120 # 6 minutes maximum wait time
attempt = 0
while attempt < max_attempts:
try:
response = requests.get(polling_endpoint, headers=headers, timeout=30)
response.raise_for_status()
transcription_result = response.json()
if transcription_result['status'] == 'completed':
if not transcription_result.get('utterances'):
raise RuntimeError("Transcript completed but contains no utterances. Ensure speaker_labels=True was set.")
return transcription_result
elif transcription_result['status'] == 'error':
raise RuntimeError(f"Transcription failed: {transcription_result.get('error', 'Unknown error')}")
else:
print(f"Transcript status: {transcription_result['status']}. Waiting...")
time.sleep(3)
attempt += 1
except requests.RequestException as e:
raise RuntimeError(f"Network error while fetching transcript: {e}")
raise RuntimeError(f"Transcript did not complete within {max_attempts * 3} seconds")

Problems:

  • Hard-coded values throughout the code
  • No configuration options explained
  • Missing parameter documentation

Solutions:

class SpeakerDiarizationConfig:
"""Configuration class for speaker diarization settings."""
def __init__(self,
min_monologue_length_ms: int = 2000,
similarity_threshold: float = 0.7,
max_speakers_per_chunk: int = 10,
audio_sample_rate: int = 16000):
"""
Initialize configuration.
Args:
min_monologue_length_ms: Minimum length of monologue to consider for speaker comparison
similarity_threshold: Threshold for speaker similarity (0.0-1.0)
max_speakers_per_chunk: Maximum expected speakers per audio chunk
audio_sample_rate: Target sample rate for audio processing
"""
self.min_monologue_length_ms = min_monologue_length_ms
self.similarity_threshold = similarity_threshold
self.max_speakers_per_chunk = max_speakers_per_chunk
self.audio_sample_rate = audio_sample_rate
# Usage example
config = SpeakerDiarizationConfig(
min_monologue_length_ms=3000, # Require 3 seconds minimum
similarity_threshold=0.8 # Higher threshold for stricter matching
)

Recommended Structure:

# Use Speaker Diarization with Async Chunking
## Overview
[What this guide covers and use cases]
## Prerequisites
[System requirements, accounts needed]
## Quick Start
[Minimal working example with explanation]
## Installation & Setup
[Detailed installation steps]
## Step-by-Step Tutorial
### 1. Prepare Your Audio Files
### 2. Generate AssemblyAI Transcripts
### 3. Configure Speaker Comparison
### 4. Process Audio Chunks
### 5. Review Results
## Configuration Options
[All customizable parameters explained]
## Troubleshooting
[Common issues and solutions]
## Advanced Usage
[
---