Feedback: guides-speaker-diarization-with-async-chunking
Documentation Feedback
Section titled “Documentation Feedback”Original URL: https://www.assemblyai.com/docs/guides/speaker-diarization-with-async-chunking
Category: guides
Generated: 05/08/2025, 4:37:37 pm
Claude Sonnet 4 Feedback
Section titled “Claude Sonnet 4 Feedback”Generated: 05/08/2025, 4:37:36 pm
Technical Documentation Analysis & Improvement Recommendations
Section titled “Technical Documentation Analysis & Improvement Recommendations”Critical Issues
Section titled “Critical Issues”1. Missing Prerequisites & Setup Information
Section titled “1. Missing Prerequisites & Setup Information”Problems:
- No system requirements specified
- Installation commands are incomplete and potentially incorrect
- No environment setup guidance
Solutions:
## Prerequisites
### System Requirements- Python 3.8 or higher- CUDA-compatible GPU (recommended for TitaNet model)- At least 4GB RAM- 2GB free disk space
### Installation```bash# Install PyTorch (check pytorch.org for your system)pip install torch torchvision torchaudio
# Install NeMo toolkitpip install nemo-toolkit[asr]
# Install other dependenciespip install assemblyai pydub requests
# Install system dependencies# On Ubuntu/Debian:sudo apt update && sudo apt install ffmpeg
# On macOS:brew install ffmpeg#### 2. **Unclear Workflow and Use Case****Problems:**- No explanation of what "async chunking" means- Missing context about when to use this approach- No overview of the complete workflow
**Solutions:**Add this section after the introduction:
```markdown## What is Async Chunking with Speaker Diarization?
Async chunking allows you to process multiple audio segments independently while maintaining speaker identity consistency across segments. This is useful for:
- Long recordings split into chunks for processing- Multiple recordings from the same meeting or conversation- Streaming audio that needs to be processed in real-time segments
### How It Works1. **Transcribe** each audio chunk with AssemblyAI's speaker diarization2. **Extract** the longest monologue from each speaker per chunk3. **Compare** speaker embeddings using TitaNet across chunks4. **Unify** speaker labels across all chunks based on voice similarity
### Workflow OverviewAudio Chunks → AssemblyAI Transcription → Speaker Monologue Extraction → TitaNet Embedding Comparison → Unified Speaker Labels → Final Transcript
3. Incomplete Input/Output Documentation
Section titled “3. Incomplete Input/Output Documentation”Problems:
- No explanation of required input formats
- Missing information about transcript ID generation
- No examples of expected outputs
Solutions:
## Input Requirements
### Audio Files- **Format**: WAV, MP3, MP4, or other common audio formats- **Duration**: Any length (will be processed in chunks)- **Quality**: 16kHz or higher sampling rate recommended- **Channels**: Mono or stereo (will be converted to mono automatically)
### AssemblyAI Transcript IDsBefore using this guide, you need to submit your audio files to AssemblyAI with speaker diarization enabled:
```pythonimport assemblyai as aai
aai.settings.api_key = "YOUR_API_KEY"
config = aai.TranscriptionConfig( speaker_labels=True, # Enable speaker diarization speakers_expected=2 # Optional: hint about number of speakers)
transcriber = aai.Transcriber(config=config)transcript = transcriber.transcribe("path/to/your/audio.wav")
print(f"Transcript ID: {transcript.id}")Expected Output
Section titled “Expected Output”The final output will be utterances with consistent speaker labels across all chunks:
{ 0: [ # First chunk {'speaker': 'A', 'text': 'Hello, how are you?', 'start': 100, 'end': 2000}, {'speaker': 'B', 'text': 'I am doing well, thanks!', 'start': 2100, 'end': 4000} ], 1: [ # Second chunk {'speaker': 'A', 'text': 'That is great to hear.', 'start': 100, 'end': 1800}, {'speaker': 'B', 'text': 'How about you?', 'start': 1900, 'end': 2500} ]}### **Code Quality Issues**
#### 4. **Poor Error Handling and Edge Cases**
**Problems:**- No error handling for file operations- Missing validation for inputs- No handling of edge cases
**Solutions:**
```pythondef get_transcript(transcript_id): """ Retrieve a completed transcript from AssemblyAI.
Args: transcript_id (str): The AssemblyAI transcript ID
Returns: dict: The completed transcript data
Raises: ValueError: If transcript_id is invalid RuntimeError: If transcription failed or timed out """ if not transcript_id or not isinstance(transcript_id, str): raise ValueError("transcript_id must be a non-empty string")
polling_endpoint = f"https://api.assemblyai.com/v2/transcript/{transcript_id}" max_attempts = 120 # 6 minutes maximum wait time attempt = 0
while attempt < max_attempts: try: response = requests.get(polling_endpoint, headers=headers, timeout=30) response.raise_for_status() transcription_result = response.json()
if transcription_result['status'] == 'completed': if not transcription_result.get('utterances'): raise RuntimeError("Transcript completed but contains no utterances. Ensure speaker_labels=True was set.") return transcription_result
elif transcription_result['status'] == 'error': raise RuntimeError(f"Transcription failed: {transcription_result.get('error', 'Unknown error')}")
else: print(f"Transcript status: {transcription_result['status']}. Waiting...") time.sleep(3) attempt += 1
except requests.RequestException as e: raise RuntimeError(f"Network error while fetching transcript: {e}")
raise RuntimeError(f"Transcript did not complete within {max_attempts * 3} seconds")5. Configuration and Customization
Section titled “5. Configuration and Customization”Problems:
- Hard-coded values throughout the code
- No configuration options explained
- Missing parameter documentation
Solutions:
class SpeakerDiarizationConfig: """Configuration class for speaker diarization settings."""
def __init__(self, min_monologue_length_ms: int = 2000, similarity_threshold: float = 0.7, max_speakers_per_chunk: int = 10, audio_sample_rate: int = 16000): """ Initialize configuration.
Args: min_monologue_length_ms: Minimum length of monologue to consider for speaker comparison similarity_threshold: Threshold for speaker similarity (0.0-1.0) max_speakers_per_chunk: Maximum expected speakers per audio chunk audio_sample_rate: Target sample rate for audio processing """ self.min_monologue_length_ms = min_monologue_length_ms self.similarity_threshold = similarity_threshold self.max_speakers_per_chunk = max_speakers_per_chunk self.audio_sample_rate = audio_sample_rate
# Usage exampleconfig = SpeakerDiarizationConfig( min_monologue_length_ms=3000, # Require 3 seconds minimum similarity_threshold=0.8 # Higher threshold for stricter matching)Documentation Structure Improvements
Section titled “Documentation Structure Improvements”6. Better Section Organization
Section titled “6. Better Section Organization”Recommended Structure:
# Use Speaker Diarization with Async Chunking
## Overview[What this guide covers and use cases]
## Prerequisites[System requirements, accounts needed]
## Quick Start[Minimal working example with explanation]
## Installation & Setup[Detailed installation steps]
## Step-by-Step Tutorial### 1. Prepare Your Audio Files### 2. Generate AssemblyAI Transcripts### 3. Configure Speaker Comparison### 4. Process Audio Chunks### 5. Review Results
## Configuration Options[All customizable parameters explained]
## Troubleshooting[Common issues and solutions]
## Advanced Usage[
---