Skip to content

Feedback: guides-speaker-identification

Original URL: https://www.assemblyai.com/docs/guides/speaker-identification
Category: guides
Generated: 05/08/2025, 4:37:39 pm


Generated: 05/08/2025, 4:37:38 pm

Technical Documentation Analysis: Speaker Identification Guide

Section titled “Technical Documentation Analysis: Speaker Identification Guide”

This documentation provides a functional walkthrough but has several clarity, completeness, and user experience issues that need addressing. Here’s my detailed analysis:

1. Missing Prerequisites & Setup Information

Section titled “1. Missing Prerequisites & Setup Information”

Current Issue: Vague requirements

* An upgraded [AssemblyAI account](https://www.assemblyai.com/dashboard/signup).

Recommended Fix:

## Prerequisites
* Python 3.7 or higher
* An AssemblyAI account with credits available
* API key from your [AssemblyAI dashboard](https://www.assemblyai.com/dashboard)
### Getting Your API Key
1. Sign up for an AssemblyAI account
2. Navigate to your dashboard
3. Copy your API key from the "API Keys" section
4. Replace `"YOUR-API-KEY"` in the code with your actual key
**Important:** This guide uses LeMUR, which requires account credits. Check your balance before proceeding.

Problem: The code is presented as one continuous block without clear sections or error handling.

Solution: Restructure into logical sections:

# Step 1: Setup and Configuration
import assemblyai as aai
import re
# Validate API key is set
if not aai.settings.api_key or aai.settings.api_key == "YOUR-API-KEY":
raise ValueError("Please set your actual API key")
# Step 2: Configure transcription
def create_transcription_config():
"""Configure transcription with speaker labels enabled."""
return aai.TranscriptionConfig(
speaker_labels=True,
# Optional: Set minimum speakers if known
# speakers_expected=2
)
# Step 3: Transcribe audio
def transcribe_audio(audio_url, config):
"""Transcribe audio and return transcript with speaker labels."""
transcriber = aai.Transcriber()
transcript = transcriber.transcribe(audio_url, config)
if transcript.status == aai.TranscriptStatus.error:
raise Exception(f"Transcription failed: {transcript.error}")
return transcript

Add a section explaining supported audio formats:

## Supported Audio Formats
This guide works with:
- Audio URLs (direct links to audio files)
- Local audio files (replace `audio_url` with file path)
- Supported formats: MP3, WAV, FLAC, M4A, OGG, WEBM
**Example with local file:**
```python
audio_file = "./path/to/your/audio.mp3"
transcript = transcriber.transcribe(audio_file, config)

Add comprehensive error handling:

def safe_transcribe_with_speakers(audio_url):
"""Safely transcribe audio with proper error handling."""
try:
transcriber = aai.Transcriber()
config = aai.TranscriptionConfig(speaker_labels=True)
print("Starting transcription...")
transcript = transcriber.transcribe(audio_url, config)
if transcript.status == aai.TranscriptStatus.error:
print(f"Transcription failed: {transcript.error}")
return None
if not transcript.utterances:
print("No speaker utterances found in transcript")
return None
print(f"Transcription completed. Found {len(transcript.utterances)} utterances")
return transcript
except Exception as e:
print(f"Error during transcription: {e}")
return None

Add a cost awareness section:

## 💰 Cost Considerations
This workflow uses two paid services:
1. **Transcription with Speaker Labels:** ~$0.65 per audio hour
2. **LeMUR Processing:** ~$0.03 per request + token usage
**Tip:** Test with short audio files first to understand costs.
import assemblyai as aai
import re
def identify_speakers_in_audio(audio_url, api_key):
"""Complete function to identify speakers by name in audio."""
# Setup
aai.settings.api_key = api_key
# Step 1: Transcribe with speaker labels
transcriber = aai.Transcriber()
config = aai.TranscriptionConfig(speaker_labels=True)
print("🎙️ Transcribing audio...")
transcript = transcriber.transcribe(audio_url, config)
if transcript.status == aai.TranscriptStatus.error:
raise Exception(f"Transcription failed: {transcript.error}")
# Step 2: Format transcript for LeMUR
text_with_speaker_labels = format_transcript_for_lemur(transcript)
# Step 3: Use LeMUR to identify speakers
speaker_mapping = identify_speakers_with_lemur(transcript, text_with_speaker_labels)
# Step 4: Return formatted results
return format_final_transcript(transcript, speaker_mapping)
def format_transcript_for_lemur(transcript):
"""Format transcript with speaker labels for LeMUR processing."""
formatted_text = ""
for utterance in transcript.utterances:
formatted_text += f"Speaker {utterance.speaker}: {utterance.text}\n\n"
return formatted_text
# Usage example
if __name__ == "__main__":
audio_url = "https://example.com/your-audio-file.mp3"
api_key = "your-actual-api-key"
try:
results = identify_speakers_in_audio(audio_url, api_key)
for speaker, text in results[:5]: # Show first 5 utterances
print(f"{speaker}: {text[:100]}...")
except Exception as e:
print(f"Error: {e}")
# Identify Speaker Names From Audio Transcripts
## Overview
Brief explanation of what this accomplishes and when to use it.
## Prerequisites
Detailed requirements and setup steps.
## Quick Start
Minimal working example for users who want to try it immediately.
## Step-by-Step Guide
1. **Transcribe Audio with Speaker Labels**
2. **Format Transcript for LeMUR**
3. **Identify Speakers Using LeMUR**
4. **Map Speaker Names to Transcript**
## Complete Code Example
Full working implementation with error handling.
## Troubleshooting
Common issues and solutions.
## Advanced Usage
- Handling large files
- Customizing LeMUR prompts
- Working with known speaker counts
## Cost Optimization Tips
## API Reference
Links to relevant API documentation.

Issue: Users don’t understand what LeMUR is or why it’s needed.

Fix: Add explanation:

## What is LeMUR?
LeMUR is AssemblyAI's Large Language Model service that can analyze transcripts and answer questions about them. We use it here to:
- Analyze speaker-labeled transcripts
- Infer speaker identities from conversation context
- Map generic "Speaker A/B" labels to actual names

Issue: Only shows truncated output.

Fix: Provide complete before/after examples:

## Expected Output
**Before (generic labels):**

Speaker A: Hi everyone, welcome to today’s podcast Speaker B: Thanks for having me, Sarah

**After (identified names):**

Sarah Johnson: Hi everyone, welcome to today’s podcast Dr. Mike Chen: Thanks for having me, Sarah

### 3. **No Validation or Quality Checks**
Add quality assurance section:
```python
def validate_speaker_identification(speaker_mapping, confidence_threshold=0
---