Feedback: guides-speaker-identification
Documentation Feedback
Section titled “Documentation Feedback”Original URL: https://www.assemblyai.com/docs/guides/speaker-identification
Category: guides
Generated: 05/08/2025, 4:37:39 pm
Claude Sonnet 4 Feedback
Section titled “Claude Sonnet 4 Feedback”Generated: 05/08/2025, 4:37:38 pm
Technical Documentation Analysis: Speaker Identification Guide
Section titled “Technical Documentation Analysis: Speaker Identification Guide”Overall Assessment
Section titled “Overall Assessment”This documentation provides a functional walkthrough but has several clarity, completeness, and user experience issues that need addressing. Here’s my detailed analysis:
🚨 Critical Issues
Section titled “🚨 Critical Issues”1. Missing Prerequisites & Setup Information
Section titled “1. Missing Prerequisites & Setup Information”Current Issue: Vague requirements
* An upgraded [AssemblyAI account](https://www.assemblyai.com/dashboard/signup).Recommended Fix:
## Prerequisites
* Python 3.7 or higher* An AssemblyAI account with credits available* API key from your [AssemblyAI dashboard](https://www.assemblyai.com/dashboard)
### Getting Your API Key1. Sign up for an AssemblyAI account2. Navigate to your dashboard3. Copy your API key from the "API Keys" section4. Replace `"YOUR-API-KEY"` in the code with your actual key
**Important:** This guide uses LeMUR, which requires account credits. Check your balance before proceeding.2. Code Structure & Flow Issues
Section titled “2. Code Structure & Flow Issues”Problem: The code is presented as one continuous block without clear sections or error handling.
Solution: Restructure into logical sections:
# Step 1: Setup and Configurationimport assemblyai as aaiimport re
# Validate API key is setif not aai.settings.api_key or aai.settings.api_key == "YOUR-API-KEY": raise ValueError("Please set your actual API key")
# Step 2: Configure transcriptiondef create_transcription_config(): """Configure transcription with speaker labels enabled.""" return aai.TranscriptionConfig( speaker_labels=True, # Optional: Set minimum speakers if known # speakers_expected=2 )
# Step 3: Transcribe audiodef transcribe_audio(audio_url, config): """Transcribe audio and return transcript with speaker labels.""" transcriber = aai.Transcriber() transcript = transcriber.transcribe(audio_url, config)
if transcript.status == aai.TranscriptStatus.error: raise Exception(f"Transcription failed: {transcript.error}")
return transcript📝 Missing Information
Section titled “📝 Missing Information”1. Input Format Requirements
Section titled “1. Input Format Requirements”Add a section explaining supported audio formats:
## Supported Audio Formats
This guide works with:- Audio URLs (direct links to audio files)- Local audio files (replace `audio_url` with file path)- Supported formats: MP3, WAV, FLAC, M4A, OGG, WEBM
**Example with local file:**```pythonaudio_file = "./path/to/your/audio.mp3"transcript = transcriber.transcribe(audio_file, config)2. Error Handling
Section titled “2. Error Handling”Add comprehensive error handling:
def safe_transcribe_with_speakers(audio_url): """Safely transcribe audio with proper error handling.""" try: transcriber = aai.Transcriber() config = aai.TranscriptionConfig(speaker_labels=True)
print("Starting transcription...") transcript = transcriber.transcribe(audio_url, config)
if transcript.status == aai.TranscriptStatus.error: print(f"Transcription failed: {transcript.error}") return None
if not transcript.utterances: print("No speaker utterances found in transcript") return None
print(f"Transcription completed. Found {len(transcript.utterances)} utterances") return transcript
except Exception as e: print(f"Error during transcription: {e}") return None3. Cost Information
Section titled “3. Cost Information”Add a cost awareness section:
## 💰 Cost Considerations
This workflow uses two paid services:1. **Transcription with Speaker Labels:** ~$0.65 per audio hour2. **LeMUR Processing:** ~$0.03 per request + token usage
**Tip:** Test with short audio files first to understand costs.🔧 Improved Examples
Section titled “🔧 Improved Examples”1. Complete Working Example
Section titled “1. Complete Working Example”import assemblyai as aaiimport re
def identify_speakers_in_audio(audio_url, api_key): """Complete function to identify speakers by name in audio."""
# Setup aai.settings.api_key = api_key
# Step 1: Transcribe with speaker labels transcriber = aai.Transcriber() config = aai.TranscriptionConfig(speaker_labels=True)
print("🎙️ Transcribing audio...") transcript = transcriber.transcribe(audio_url, config)
if transcript.status == aai.TranscriptStatus.error: raise Exception(f"Transcription failed: {transcript.error}")
# Step 2: Format transcript for LeMUR text_with_speaker_labels = format_transcript_for_lemur(transcript)
# Step 3: Use LeMUR to identify speakers speaker_mapping = identify_speakers_with_lemur(transcript, text_with_speaker_labels)
# Step 4: Return formatted results return format_final_transcript(transcript, speaker_mapping)
def format_transcript_for_lemur(transcript): """Format transcript with speaker labels for LeMUR processing.""" formatted_text = "" for utterance in transcript.utterances: formatted_text += f"Speaker {utterance.speaker}: {utterance.text}\n\n" return formatted_text
# Usage exampleif __name__ == "__main__": audio_url = "https://example.com/your-audio-file.mp3" api_key = "your-actual-api-key"
try: results = identify_speakers_in_audio(audio_url, api_key) for speaker, text in results[:5]: # Show first 5 utterances print(f"{speaker}: {text[:100]}...") except Exception as e: print(f"Error: {e}")🏗️ Structure Improvements
Section titled “🏗️ Structure Improvements”Recommended New Structure:
Section titled “Recommended New Structure:”# Identify Speaker Names From Audio Transcripts
## OverviewBrief explanation of what this accomplishes and when to use it.
## PrerequisitesDetailed requirements and setup steps.
## Quick StartMinimal working example for users who want to try it immediately.
## Step-by-Step Guide1. **Transcribe Audio with Speaker Labels**2. **Format Transcript for LeMUR**3. **Identify Speakers Using LeMUR**4. **Map Speaker Names to Transcript**
## Complete Code ExampleFull working implementation with error handling.
## TroubleshootingCommon issues and solutions.
## Advanced Usage- Handling large files- Customizing LeMUR prompts- Working with known speaker counts
## Cost Optimization Tips
## API ReferenceLinks to relevant API documentation.🎯 User Pain Points & Solutions
Section titled “🎯 User Pain Points & Solutions”1. Unclear LeMUR Context
Section titled “1. Unclear LeMUR Context”Issue: Users don’t understand what LeMUR is or why it’s needed.
Fix: Add explanation:
## What is LeMUR?
LeMUR is AssemblyAI's Large Language Model service that can analyze transcripts and answer questions about them. We use it here to:- Analyze speaker-labeled transcripts- Infer speaker identities from conversation context- Map generic "Speaker A/B" labels to actual names2. Limited Output Examples
Section titled “2. Limited Output Examples”Issue: Only shows truncated output.
Fix: Provide complete before/after examples:
## Expected Output
**Before (generic labels):**Speaker A: Hi everyone, welcome to today’s podcast Speaker B: Thanks for having me, Sarah
**After (identified names):**Sarah Johnson: Hi everyone, welcome to today’s podcast Dr. Mike Chen: Thanks for having me, Sarah
### 3. **No Validation or Quality Checks**Add quality assurance section:```pythondef validate_speaker_identification(speaker_mapping, confidence_threshold=0
---