Skip to content

Feedback: guides-speaker_timeline

Original URL: https://www.assemblyai.com/docs/guides/speaker_timeline
Category: guides
Generated: 05/08/2025, 4:36:56 pm


Generated: 05/08/2025, 4:36:55 pm

Documentation Analysis: Speaker Timeline Guide

Section titled “Documentation Analysis: Speaker Timeline Guide”

This guide provides a functional example but lacks depth, context, and user-friendly explanations. Here’s my detailed feedback:

# Add this section at the beginning
"""
Requirements:
- Python 3.7+
- assemblyai>=0.17.0
- matplotlib>=3.5.0
- Valid AssemblyAI API key with speaker diarization credits
"""
  • Missing: Screenshot or description of what the final plot looks like
  • Add: Sample output image with explanation of visual elements
  • Include: Description of how to interpret the timeline

The current code will fail silently in several scenarios:

def plot_speaker_timeline(utterances):
# Add input validation
if not utterances:
print("No utterances found. Check if speaker_labels=True and audio contains speech.")
return
# Add error handling for transcription failures
if transcript.status == aai.TranscriptStatus.error:
print(f"Transcription failed: {transcript.error}")
return

Current: start = utterance.start / 60000 # in minutes Better:

# Convert from milliseconds to minutes for better readability
start_minutes = utterance.start / 60000 # AssemblyAI returns timestamps in milliseconds

Add explanation:

Speaker diarization identifies “who spoke when” in audio recordings. Each utterance represents a continuous speech segment from one speaker.

Current: Confusing modulo operation Better:

# Cycle through colors if we have more speakers than available colors
if speaker not in speaker_colors:
color_index = len(speaker_colors) % len(colors)
speaker_colors[speaker] = colors[color_index]
print(f"Assigned {colors[color_index]} to {speaker}")
# Plot A Speaker Timeline with Matplotlib
## Overview
Brief explanation of what this guide accomplishes and when to use it.
## Prerequisites
- Requirements and setup
## Quick Start
- Complete working example
## Step-by-Step Tutorial
- Detailed breakdown
## Customization Options
- How to modify the visualization
## Troubleshooting
- Common issues and solutions
## Next Steps
- Related features and advanced usage
# Separate configuration from main logic
class SpeakerTimelinePlotter:
def __init__(self, figsize=(12, 4), colors=None):
self.figsize = figsize
self.colors = colors or ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd']
def plot(self, utterances, title="Speaker Timeline"):
# Implementation here
pass
# Support various audio formats and URLs
audio_sources = [
"./my-audio.mp3", # Local file
"./interview.wav", # Different format
"https://example.com/audio.mp3" # Remote URL
]
for audio in audio_sources:
transcript = transcriber.transcribe(audio, config)
if transcript.utterances:
plot_speaker_timeline(transcript.utterances)
# Example: Custom styling
def plot_speaker_timeline_custom(utterances, show_text=True, time_unit='seconds'):
"""
Enhanced version with customization options
Args:
utterances: List of utterance objects from AssemblyAI
show_text: Whether to display speaker labels on bars
time_unit: 'seconds' or 'minutes' for time axis
"""
# Implementation with options

Problem: Hardcoded API keys Solution:

import os
from dotenv import load_dotenv
load_dotenv()
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
if not aai.settings.api_key:
raise ValueError("Please set ASSEMBLYAI_API_KEY environment variable")

Problem: Relative paths may not work Solution:

import os
from pathlib import Path
# Validate file exists
audio_file = Path("./my-audio.mp3")
if not audio_file.exists():
raise FileNotFoundError(f"Audio file not found: {audio_file}")

Problem: No guidance on processing time Solution:

# Add progress indication
print("Starting transcription... This may take a few minutes for large files.")
transcript = transcriber.transcribe(audio_file, config)
# Show processing status
while transcript.status not in [aai.TranscriptStatus.completed, aai.TranscriptStatus.error]:
print("Processing...")
time.sleep(5)
transcript = aai.Transcript.get_by_id(transcript.id)
# Make plot interactive
import matplotlib.patches as mpatches
def plot_interactive_timeline(utterances):
# Add click handlers, hover tooltips
# Show utterance text on hover
pass
# Save plot to file
plt.savefig('speaker_timeline.png', dpi=300, bbox_inches='tight')
print("Timeline saved as 'speaker_timeline.png'")
## Performance Notes
- Speaker diarization adds ~30% to transcription time
- Minimum audio length: 10 seconds for reliable results
- Maximum speakers detected: ~10 (accuracy decreases with more speakers)
## Common Issues
- **No utterances returned**: Check audio quality and length
- **All speakers labeled as 'A'**: Audio may have only one speaker
- **Plot not displaying**: Ensure you're in an environment that supports matplotlib display

This enhanced documentation would provide a much better user experience with clearer explanations, better error handling, and more practical examples.