Feedback: guides-task-endpoint-custom-summary
Documentation Feedback
Section titled “Documentation Feedback”Original URL: https://www.assemblyai.com/docs/guides/task-endpoint-custom-summary
Category: guides
Generated: 05/08/2025, 4:36:19 pm
Claude Sonnet 4 Feedback
Section titled “Claude Sonnet 4 Feedback”Generated: 05/08/2025, 4:36:18 pm
Technical Documentation Analysis: Custom Summary Using LeMUR
Section titled “Technical Documentation Analysis: Custom Summary Using LeMUR”Overall Assessment
Section titled “Overall Assessment”This documentation provides a functional walkthrough but lacks depth in several critical areas. While the basic implementation is clear, users may struggle with customization, error handling, and understanding the broader context of the feature.
Critical Missing Information
Section titled “Critical Missing Information”1. Prerequisites and Requirements
Section titled “1. Prerequisites and Requirements”- Missing: Minimum Python version requirements
- Missing: Complete list of dependencies
- Missing: Account tier requirements beyond “upgrade with credit card”
- Add: Clear system requirements section
2. Error Handling and Troubleshooting
Section titled “2. Error Handling and Troubleshooting”# Add this comprehensive error handling exampletry: transcript = aai.Transcriber().transcribe(audio_url) if transcript.status == aai.TranscriptStatus.error: print(f"Transcription failed: {transcript.error}") return
result = transcript.lemur.task(prompt, final_model=aai.LemurModel.claude3_5_sonnet)
except aai.AuthenticationError: print("Invalid API key or insufficient permissions")except aai.RateLimitError: print("Rate limit exceeded. Please wait before retrying.")except Exception as e: print(f"Unexpected error: {e}")3. API Response Structure
Section titled “3. API Response Structure”# Document the complete response objectprint(f"Summary: {result.response}")print(f"Request ID: {result.request_id}")print(f"Usage: {result.usage}") # Token usage informationStructural Improvements
Section titled “Structural Improvements”1. Reorganize Content Flow
Section titled “1. Reorganize Content Flow”# Generate Custom Summaries Using LeMUR
## OverviewBrief explanation of what LeMUR does and use cases
## Prerequisites- Python 3.7+- AssemblyAI account with LeMUR access- API key from dashboard
## Quick Start[Current quickstart code with error handling]
## Detailed Guide[Step-by-step breakdown]
## Customization Options[Prompt engineering, models, formats]
## Advanced Examples[Multiple examples for different use cases]
## Troubleshooting[Common issues and solutions]
## API Reference[Complete parameter documentation]Unclear Explanations Requiring Clarification
Section titled “Unclear Explanations Requiring Clarification”1. LeMUR Model Selection
Section titled “1. LeMUR Model Selection”# Add explanation of available modelsavailable_models = { aai.LemurModel.claude3_5_sonnet: "Best for complex analysis, higher cost", aai.LemurModel.claude3_haiku: "Faster, cost-effective for simple tasks", # Add other available models with use case guidance}2. Prompt Engineering Guidance
Section titled “2. Prompt Engineering Guidance”### Prompt Best Practices
**Effective Prompt Structure:**- Clear role definition- Specific output requirements- Format specifications- Constraints and limitations
**Example Variations:**```python# For meeting summariesmeeting_prompt = """You are a meeting secretary. Create an executive summary focusing on:- Key decisions made- Action items assigned- Next steps identifiedFormat as numbered sections."""
# For interview summariesinterview_prompt = """Summarize this interview highlighting:- Main topics discussed- Key insights shared- Notable quotesKeep under 200 words."""Better Examples Needed
Section titled “Better Examples Needed”1. Multiple Use Cases
Section titled “1. Multiple Use Cases”# Add these diverse examples:
# 1. Customer service call summarycustomer_service_prompt = """Summarize this customer service interaction:- Customer issue/concern- Solution provided- Customer satisfaction level- Follow-up required (yes/no)"""
# 2. Podcast episode summarypodcast_prompt = """Create a podcast episode summary with:- Main topic and guests- Key discussion points (3-5 bullets)- Notable quotes or insights- Target audience takeaways"""
# 3. Legal deposition summarylegal_prompt = """Provide a legal deposition summary including:- Parties involved- Key testimony points- Objections raised- Critical admissions or denials"""2. Format Options Examples
Section titled “2. Format Options Examples”format_examples = { "Executive Summary": "3-paragraph format with overview, details, conclusion", "Bullet Points": "Hierarchical bullet structure", "Timeline": "Chronological event sequence", "Q&A Format": "Question and answer pairs", "Table": "Structured data in tabular format"}User Pain Points to Address
Section titled “User Pain Points to Address”1. File Size and Processing Limits
Section titled “1. File Size and Processing Limits”### Limitations and Constraints- Maximum audio file size: [specify limit]- Processing time estimates: [provide ranges]- Transcript length limits for LeMUR: [specify]- Rate limiting: [requests per minute/hour]2. Cost Transparency
Section titled “2. Cost Transparency”# Add cost estimation helperdef estimate_cost(audio_duration_minutes, transcript_length_words): """ Estimate processing costs for transcription + LeMUR summary
Args: audio_duration_minutes: Length of audio file transcript_length_words: Estimated word count
Returns: dict: Cost breakdown """ transcription_cost = audio_duration_minutes * 0.00065 # Current rate lemur_cost = (transcript_length_words / 1000) * 0.015 # Estimated
return { "transcription": transcription_cost, "lemur": lemur_cost, "total": transcription_cost + lemur_cost }3. Async Processing for Large Files
Section titled “3. Async Processing for Large Files”# Add async example for large filesimport asyncio
async def process_large_file(audio_url): """Handle large files with async processing""" config = aai.TranscriptionConfig( speech_model=aai.SpeechModel.best # For better accuracy )
transcriber = aai.Transcriber(config=config) transcript = await transcriber.transcribe_async(audio_url)
# Poll for completion while transcript.status == aai.TranscriptStatus.processing: await asyncio.sleep(5) transcript = await transcript.get_async()
return transcriptAdditional Recommendations
Section titled “Additional Recommendations”1. Add Interactive Elements
Section titled “1. Add Interactive Elements”- Link to live demo or playground
- “Try it now” button with sample audio
- Interactive prompt builder
2. Cross-References
Section titled “2. Cross-References”- Link to related LeMUR endpoints (Q&A, Topics)
- Reference prompt engineering best practices
- Connect to audio preprocessing guides
3. Complete Code Templates
Section titled “3. Complete Code Templates”Provide production-ready templates with:
- Environment variable management
- Logging configuration
- Configuration file usage
- Batch processing examples
This documentation would significantly benefit from these improvements to provide a more comprehensive, user-friendly experience that anticipates and addresses real-world implementation challenges.