Feedback: guides-task-endpoint-structured-QA
Documentation Feedback
Section titled “Documentation Feedback”Original URL: https://www.assemblyai.com/docs/guides/task-endpoint-structured-QA
Category: guides
Generated: 05/08/2025, 4:35:37 pm
Claude Sonnet 4 Feedback
Section titled “Claude Sonnet 4 Feedback”Generated: 05/08/2025, 4:35:36 pm
Technical Documentation Analysis & Feedback
Section titled “Technical Documentation Analysis & Feedback”Overall Assessment
Section titled “Overall Assessment”This documentation provides a functional walkthrough but lacks the polish and completeness expected for production developer documentation. The content is more tutorial-like than comprehensive reference material.
Critical Issues
Section titled “Critical Issues”1. Missing Prerequisites & Setup Information
Section titled “1. Missing Prerequisites & Setup Information”Current Problem: Jumps directly into code without proper setup context.
Recommendations:
## Prerequisites- Python 3.7+ installed- AssemblyAI account with API key- Basic familiarity with XML parsing in Python
## Required Dependencies```bashpip install assemblyai>=0.17.0Environment Setup
Section titled “Environment Setup”# Set your API key as an environment variable (recommended)export ASSEMBLYAI_API_KEY="your_api_key_here"
# Or set it in your code (less secure)import assemblyai as aaiaai.settings.api_key = "your_api_key_here"2. Unclear Value Proposition & Use Cases
Section titled “2. Unclear Value Proposition & Use Cases”Current Problem: Doesn’t explain when/why to use structured Q&A vs other LeMUR endpoints.
Add Section:
## When to Use Structured Q&A- **Automated reporting**: Extract specific metrics from meeting recordings- **Compliance auditing**: Ask standardized questions across multiple transcripts- **Data extraction**: Pull structured information for databases or dashboards- **Quality assurance**: Ensure consistent answer formats for downstream processing
## Comparison with Other LeMUR Endpoints| Endpoint | Best For | Output Format ||----------|----------|---------------|| Task | Custom prompts, flexible responses | Unstructured text || Q&A | Simple questions | Basic text answers || **Structured Q&A** | **Multiple questions, consistent formatting** | **Structured XML/JSON** |3. Incomplete Error Handling
Section titled “3. Incomplete Error Handling”Current Problem: No error handling for common failure scenarios.
Add Comprehensive Error Handling:
import assemblyai as aaiimport xml.etree.ElementTree as ETfrom xml.parsers.expat import ExpatError
def safe_transcribe_and_query(audio_url, questions, max_retries=3): """ Safely transcribe audio and run structured Q&A with error handling """ try: # Transcribe with error handling transcript = aai.Transcriber().transcribe(audio_url)
if transcript.status == aai.TranscriptStatus.error: raise Exception(f"Transcription failed: {transcript.error}")
# Run LeMUR task with retry logic for attempt in range(max_retries): try: result = transcript.lemur.task(prompt, final_model=aai.LemurModel.claude3_5_sonnet) return parse_xml_response(result.response) except Exception as e: if attempt == max_retries - 1: raise print(f"Attempt {attempt + 1} failed: {e}. Retrying...")
except aai.exceptions.AuthenticationError: raise Exception("Invalid API key. Check your AssemblyAI credentials.") except aai.exceptions.RateLimitError: raise Exception("Rate limit exceeded. Please wait before trying again.") except Exception as e: raise Exception(f"Unexpected error: {str(e)}")
def parse_xml_response(response_text): """Parse XML response with proper error handling""" try: clean_response = escape_xml_characters(response_text).strip() root = ET.fromstring(clean_response)
results = [] for response_elem in root.findall('response'): question_elem = response_elem.find('question') answer_elem = response_elem.find('answer')
if question_elem is None or answer_elem is None: print("Warning: Found response element missing question or answer") continue
results.append({ 'question': question_elem.text or "", 'answer': answer_elem.text or "" })
return results
except ExpatError as e: raise Exception(f"Invalid XML response from LeMUR: {e}") except Exception as e: raise Exception(f"Failed to parse response: {e}")4. Limited Examples & Use Cases
Section titled “4. Limited Examples & Use Cases”Current Problem: Only one basic example with meeting audio.
Add Multiple Examples:
# Example 1: Financial earnings call analysisfinancial_questions = [ aai.LemurQuestion( question="What was the revenue growth percentage?", answer_format="percentage with one decimal place", context="Revenue growth compared to previous quarter" ), aai.LemurQuestion( question="What were the main growth drivers?", answer_format="bullet points, maximum 3 items" ), aai.LemurQuestion( question="Is the company profitable?", answer_options=["Yes", "No", "Break-even", "Not mentioned"] )]
# Example 2: Customer support call analysissupport_questions = [ aai.LemurQuestion( question="What was the customer's main issue?", answer_format="one sentence summary" ), aai.LemurQuestion( question="Was the issue resolved?", answer_options=["Resolved", "Partially resolved", "Unresolved", "Escalated"] ), aai.LemurQuestion( question="Customer satisfaction level", answer_options=["Very satisfied", "Satisfied", "Neutral", "Dissatisfied", "Very dissatisfied", "Not indicated"] )]5. Missing Configuration Options
Section titled “5. Missing Configuration Options”Current Problem: Doesn’t explain available models or configuration parameters.
Add Configuration Section:
## Configuration Options
### Available Models```python# Choose the best model for your use casemodels = { aai.LemurModel.default: "Balanced performance and cost", aai.LemurModel.claude3_5_sonnet: "Highest accuracy, best for complex analysis", aai.LemurModel.claude3_haiku: "Fastest responses, good for simple questions"}
# Usageresult = transcript.lemur.task(prompt, final_model=aai.LemurModel.claude3_haiku)Advanced Parameters
Section titled “Advanced Parameters”result = transcript.lemur.task( prompt, final_model=aai.LemurModel.claude3_5_sonnet, max_output_size=3000, # Limit response length temperature=0.1 # Lower temperature for more consistent responses)6. Poor Code Organization
Section titled “6. Poor Code Organization”Current Problem: All code in one block without modular structure.
Provide Modular Structure:
class StructuredQAProcessor: def __init__(self, api_key): aai.settings.api_key = api_key self.transcriber = aai.Transcriber()
def process_audio(self, audio_url, questions, model=aai.LemurModel.claude3_5_sonnet): """Complete pipeline from audio to structured answers""" transcript = self._transcribe(audio_url) prompt = self._build_prompt(questions) response = self._query_lemur(transcript, prompt, model) return self._parse_response(response)
def _transcribe(self, audio_url): # Implementation with error handling pass
def _build_prompt(self, questions): # Implementation pass
# ... other methodsStructural Improvements
Section titled “Structural Improvements”1. Add Missing Sections
Section titled “1. Add Missing Sections”## Table of Contents1. [Overview](#overview)2. [Prerequisites](#prerequisites)3. [Quick Start](#quick-start)4. [Step-by-Step Guide](#step-by-step-guide)5. [Configuration Options](#configuration-options)6. [Examples](#examples)7. [Error Handling](#error-handling)8. [Best Practices](#best-practices)9
---