Feedback: guides-titanet-speaker-identification
Documentation Feedback
Section titled “Documentation Feedback”Original URL: https://www.assemblyai.com/docs/guides/titanet-speaker-identification
Category: guides
Generated: 05/08/2025, 4:35:44 pm
Claude Sonnet 4 Feedback
Section titled “Claude Sonnet 4 Feedback”Generated: 05/08/2025, 4:35:43 pm
Technical Documentation Analysis & Feedback
Section titled “Technical Documentation Analysis & Feedback”Overview
Section titled “Overview”This documentation shows promise but needs significant improvements in structure, clarity, and user experience. The content is technically sound but poorly organized and lacks crucial information for successful implementation.
Critical Issues
Section titled “Critical Issues”1. Misleading Title and Structure
Section titled “1. Misleading Title and Structure”Problem: The document is titled as a “guide” but reads like a code dump with minimal explanation. Fix:
- Restructure as a proper step-by-step tutorial
- Add a clear table of contents
- Include an architecture overview diagram
- Separate conceptual explanations from code implementation
2. Dangerous Quickstart Section
Section titled “2. Dangerous Quickstart Section”Problem: The 200+ line “Quickstart” is overwhelming and contains hardcoded URLs that will expire. Fix:
# Replace this massive code block with:# 1. A simple 10-line example showing the core concept# 2. Link to full implementation below# 3. Use placeholder URLs or explain how to get test data
# Example - Simple speaker identificationimport assemblyai as aaifrom nemo.collections.asr.models import EncDecSpeakerLabelModel
# Initialize modelsaai.settings.api_key = "YOUR_API_KEY"speaker_model = EncDecSpeakerLabelModel.from_pretrained("nvidia/speakerverification_en_titanet_large")
# Basic workflowtranscript = aai.Transcriber().transcribe("path/to/audio.wav")embedding = speaker_model.get_embedding("path/to/audio.wav")# ... identification logic3. Missing Prerequisites and System Requirements
Section titled “3. Missing Prerequisites and System Requirements”Add this section:
## Prerequisites
### System Requirements- Python 3.8 or higher- CUDA-capable GPU (recommended) or CPU with 8GB+ RAM- 10GB+ free disk space for model downloads- Linux/macOS (Windows support limited)
### Required Accounts- [AssemblyAI API key](https://www.assemblyai.com/dashboard/signup) (free tier available)- [Pinecone account](https://app.pinecone.io/) (free tier: 1M vectors)
### Audio Requirements- WAV format (mono preferred, stereo will be converted)- Sample rate: 16kHz recommended- Minimum 3-5 seconds per speaker for fingerprinting4. Installation Issues
Section titled “4. Installation Issues”Problem: Single pip install command is likely to fail and takes “several minutes” with no guidance. Fix:
## Installation
### Step 1: Create Virtual Environment```bashpython -m venv speaker_id_envsource speaker_id_env/bin/activate # Linux/macOS# orspeaker_id_env\Scripts\activate # WindowsStep 2: Install PyTorch (CUDA support)
Section titled “Step 2: Install PyTorch (CUDA support)”# For CUDA 11.8pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118# For CPU onlypip install torch torchvision torchaudioStep 3: Install Core Dependencies
Section titled “Step 3: Install Core Dependencies”pip install assemblyai pinecone-client pydubStep 4: Install NeMo Toolkit
Section titled “Step 4: Install NeMo Toolkit”pip install nemo_toolkit[asr]Expected install time: 10-15 minutes Total download size: ~3GB
### 5. **Poor Error Handling and Debugging****Problem**: No error handling, debugging tips, or troubleshooting section.**Add**:```markdown## Troubleshooting
### Common Issues
#### CUDA Out of Memory```python# Add to your code:import torchif torch.cuda.is_available(): torch.cuda.empty_cache()Audio Format Errors
Section titled “Audio Format Errors”- Ensure files are in WAV format
- Check sample rate:
ffmpeg -i input.wav - Convert if needed:
ffmpeg -i input.mp3 -ar 16000 -ac 1 output.wav
Pinecone Connection Issues
Section titled “Pinecone Connection Issues”# Test connection:try: pc.list_indexes() print("Pinecone connection successful")except Exception as e: print(f"Pinecone error: {e}")### 6. **Hardcoded Values and Magic Numbers****Problem**: Unexplained thresholds and hardcoded parameters.**Fix**:```python# Replace magic numbers with explained constantsSPEAKER_SIMILARITY_THRESHOLD = 0.5 # Minimum confidence for speaker matchMIN_UTTERANCE_LENGTH_MS = 5000 # Minimum audio length for reliable identificationEMBEDDING_DIMENSION = 192 # TitaNet-Large embedding sizePINECONE_TOP_K = 3 # Number of similar speakers to retrieve7. Missing Usage Examples and Use Cases
Section titled “7. Missing Usage Examples and Use Cases”Add practical examples:
## Use Cases
### 1. Meeting Transcription- Identify recurring meeting participants- Track speaker participation time- Generate speaker-specific meeting notes
### 2. Podcast/Interview Processing- Automatically label speakers in multi-episode series- Create speaker-specific highlight reels- Generate per-speaker transcripts
### 3. Call Center Analytics- Identify customers vs agents- Track agent performance- Analyze conversation patterns8. Security and API Key Management
Section titled “8. Security and API Key Management”Add security section:
## Security Best Practices
### Environment Variables```bash# .env fileASSEMBLYAI_API_KEY=your_key_herePINECONE_API_KEY=your_key_here# In your codeimport osfrom dotenv import load_dotenv
load_dotenv()aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))Rate Limits
Section titled “Rate Limits”- AssemblyAI: 5 concurrent transcriptions (free tier)
- Pinecone: 100 requests/minute (free tier)
## Structural Improvements Needed
### 1. **Add Conceptual Overview**```markdown## How It Works
1. **Audio Preprocessing**: Convert audio to WAV, ensure mono channel2. **Initial Diarization**: AssemblyAI separates speakers (Speaker A, B, C...)3. **Embedding Generation**: TitaNet creates 192-dimension speaker fingerprints4. **Speaker Matching**: Compare utterances against known speaker database5. **Identity Assignment**: Replace generic labels with actual names
[Include architecture diagram here]2. Break Down the Monolithic Functions
Section titled “2. Break Down the Monolithic Functions”The current functions are too complex. Split them:
# Instead of one giant function, create focused utilities:class SpeakerIdentifier: def __init__(self, pinecone_key, assemblyai_key): # initialization
def add_speaker_fingerprint(self, name, audio_file): # focused fingerprint creation
def identify_utterance(self, audio_segment): # single utterance identification
def process_conversation(self, audio_file): # high-level workflow orchestration3. Add Performance and Cost Information
Section titled “3. Add Performance and Cost Information”## Performance & Costs
### Processing Time- TitaNet embedding: ~2-3 seconds per utterance- AssemblyAI transcription: ~15-30% of audio length- Total: ~2-3x real-time for complete pipeline
### API Costs (approximate)- AssemblyAI: $0.65/hour of audio- Pinecone: Free up to 1M vectors- Total: ~$1-2 per hour of processed audio4. Add Data Management Section
Section titled “4. Add Data Management Section”## Managing Speaker Database
### Adding New Speakers```python# Best practices for speaker fingerprints:# - Use 10-30 seconds of clear speech# - Avoid background noise# - Multiple samples improve accuracy
speaker_id.add_speaker_fingerprint( name="John Doe", audio_file="john_sample.wav", quality_check=True #
---