Skip to content

Feedback: guides-titanet-speaker-identification

Original URL: https://www.assemblyai.com/docs/guides/titanet-speaker-identification
Category: guides
Generated: 05/08/2025, 4:35:44 pm


Generated: 05/08/2025, 4:35:43 pm

Technical Documentation Analysis & Feedback

Section titled “Technical Documentation Analysis & Feedback”

This documentation shows promise but needs significant improvements in structure, clarity, and user experience. The content is technically sound but poorly organized and lacks crucial information for successful implementation.

Problem: The document is titled as a “guide” but reads like a code dump with minimal explanation. Fix:

  • Restructure as a proper step-by-step tutorial
  • Add a clear table of contents
  • Include an architecture overview diagram
  • Separate conceptual explanations from code implementation

Problem: The 200+ line “Quickstart” is overwhelming and contains hardcoded URLs that will expire. Fix:

# Replace this massive code block with:
# 1. A simple 10-line example showing the core concept
# 2. Link to full implementation below
# 3. Use placeholder URLs or explain how to get test data
# Example - Simple speaker identification
import assemblyai as aai
from nemo.collections.asr.models import EncDecSpeakerLabelModel
# Initialize models
aai.settings.api_key = "YOUR_API_KEY"
speaker_model = EncDecSpeakerLabelModel.from_pretrained("nvidia/speakerverification_en_titanet_large")
# Basic workflow
transcript = aai.Transcriber().transcribe("path/to/audio.wav")
embedding = speaker_model.get_embedding("path/to/audio.wav")
# ... identification logic

3. Missing Prerequisites and System Requirements

Section titled “3. Missing Prerequisites and System Requirements”

Add this section:

## Prerequisites
### System Requirements
- Python 3.8 or higher
- CUDA-capable GPU (recommended) or CPU with 8GB+ RAM
- 10GB+ free disk space for model downloads
- Linux/macOS (Windows support limited)
### Required Accounts
- [AssemblyAI API key](https://www.assemblyai.com/dashboard/signup) (free tier available)
- [Pinecone account](https://app.pinecone.io/) (free tier: 1M vectors)
### Audio Requirements
- WAV format (mono preferred, stereo will be converted)
- Sample rate: 16kHz recommended
- Minimum 3-5 seconds per speaker for fingerprinting

Problem: Single pip install command is likely to fail and takes “several minutes” with no guidance. Fix:

## Installation
### Step 1: Create Virtual Environment
```bash
python -m venv speaker_id_env
source speaker_id_env/bin/activate # Linux/macOS
# or
speaker_id_env\Scripts\activate # Windows
Terminal window
# For CUDA 11.8
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# For CPU only
pip install torch torchvision torchaudio
Terminal window
pip install assemblyai pinecone-client pydub
Terminal window
pip install nemo_toolkit[asr]

Expected install time: 10-15 minutes Total download size: ~3GB

### 5. **Poor Error Handling and Debugging**
**Problem**: No error handling, debugging tips, or troubleshooting section.
**Add**:
```markdown
## Troubleshooting
### Common Issues
#### CUDA Out of Memory
```python
# Add to your code:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
  • Ensure files are in WAV format
  • Check sample rate: ffmpeg -i input.wav
  • Convert if needed: ffmpeg -i input.mp3 -ar 16000 -ac 1 output.wav
# Test connection:
try:
pc.list_indexes()
print("Pinecone connection successful")
except Exception as e:
print(f"Pinecone error: {e}")
### 6. **Hardcoded Values and Magic Numbers**
**Problem**: Unexplained thresholds and hardcoded parameters.
**Fix**:
```python
# Replace magic numbers with explained constants
SPEAKER_SIMILARITY_THRESHOLD = 0.5 # Minimum confidence for speaker match
MIN_UTTERANCE_LENGTH_MS = 5000 # Minimum audio length for reliable identification
EMBEDDING_DIMENSION = 192 # TitaNet-Large embedding size
PINECONE_TOP_K = 3 # Number of similar speakers to retrieve

Add practical examples:

## Use Cases
### 1. Meeting Transcription
- Identify recurring meeting participants
- Track speaker participation time
- Generate speaker-specific meeting notes
### 2. Podcast/Interview Processing
- Automatically label speakers in multi-episode series
- Create speaker-specific highlight reels
- Generate per-speaker transcripts
### 3. Call Center Analytics
- Identify customers vs agents
- Track agent performance
- Analyze conversation patterns

Add security section:

## Security Best Practices
### Environment Variables
```bash
# .env file
ASSEMBLYAI_API_KEY=your_key_here
PINECONE_API_KEY=your_key_here
# In your code
import os
from dotenv import load_dotenv
load_dotenv()
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
  • AssemblyAI: 5 concurrent transcriptions (free tier)
  • Pinecone: 100 requests/minute (free tier)
## Structural Improvements Needed
### 1. **Add Conceptual Overview**
```markdown
## How It Works
1. **Audio Preprocessing**: Convert audio to WAV, ensure mono channel
2. **Initial Diarization**: AssemblyAI separates speakers (Speaker A, B, C...)
3. **Embedding Generation**: TitaNet creates 192-dimension speaker fingerprints
4. **Speaker Matching**: Compare utterances against known speaker database
5. **Identity Assignment**: Replace generic labels with actual names
[Include architecture diagram here]

The current functions are too complex. Split them:

# Instead of one giant function, create focused utilities:
class SpeakerIdentifier:
def __init__(self, pinecone_key, assemblyai_key):
# initialization
def add_speaker_fingerprint(self, name, audio_file):
# focused fingerprint creation
def identify_utterance(self, audio_segment):
# single utterance identification
def process_conversation(self, audio_file):
# high-level workflow orchestration
## Performance & Costs
### Processing Time
- TitaNet embedding: ~2-3 seconds per utterance
- AssemblyAI transcription: ~15-30% of audio length
- Total: ~2-3x real-time for complete pipeline
### API Costs (approximate)
- AssemblyAI: $0.65/hour of audio
- Pinecone: Free up to 1M vectors
- Total: ~$1-2 per hour of processed audio
## Managing Speaker Database
### Adding New Speakers
```python
# Best practices for speaker fingerprints:
# - Use 10-30 seconds of clear speech
# - Avoid background noise
# - Multiple samples improve accuracy
speaker_id.add_speaker_fingerprint(
name="John Doe",
audio_file="john_sample.wav",
quality_check=True #
---