Feedback: guides-traditional_simplified_chinese
Documentation Feedback
Section titled “Documentation Feedback”Original URL: https://www.assemblyai.com/docs/guides/traditional_simplified_chinese
Category: guides
Generated: 05/08/2025, 4:35:34 pm
Claude Sonnet 4 Feedback
Section titled “Claude Sonnet 4 Feedback”Generated: 05/08/2025, 4:35:33 pm
Technical Documentation Analysis & Improvement Recommendations
Section titled “Technical Documentation Analysis & Improvement Recommendations”Overall Assessment
Section titled “Overall Assessment”This documentation provides a functional solution but has several areas for improvement in clarity, completeness, and user experience. Here’s my detailed analysis:
🔴 Critical Issues
Section titled “🔴 Critical Issues”1. Missing Information
Section titled “1. Missing Information”- No prerequisites section: Users don’t know what Python version is required
- No OpenCC configuration details: Limited explanation of available conversion options
- No troubleshooting section: Common errors and solutions are missing
- No performance considerations: File size limits, processing time expectations
2. Unclear Explanations
Section titled “2. Unclear Explanations”- Vague problem description: “mixes both Simplified and Traditional Chinese characters” needs concrete examples
- Missing context: When would users choose one script over another?
- Incomplete error handling: Only covers transcription errors, not conversion errors
🟡 Moderate Issues
Section titled “🟡 Moderate Issues”3. Better Examples Needed
Section titled “3. Better Examples Needed”- Show actual mixed output: Display real transcript text before/after conversion
- Multiple use cases: Different audio types (interviews, lectures, phone calls)
- Batch processing example: Most users will process multiple files
4. Structure Improvements
Section titled “4. Structure Improvements”- Redundant code: Quickstart and step-by-step repeat the same information
- Missing sections: Use cases, limitations, alternatives
- Poor information hierarchy: Important details buried in code comments
📋 Specific Recommendations
Section titled “📋 Specific Recommendations”A. Add Missing Sections
Section titled “A. Add Missing Sections”## Prerequisites- Python 3.7 or higher- AssemblyAI API key ([get one here](link))- Audio file in supported format (MP3, WAV, M4A, etc.)
## When to Use This GuideUse this approach when:- Your transcribed Chinese text contains mixed scripts- You need consistent formatting for downstream processing- You're building applications for specific Chinese-speaking regions
## Limitations- Conversion is character-based, not context-aware- May not handle specialized terminology perfectly- Requires post-processing step (adds latency)B. Improve Examples
Section titled “B. Improve Examples”# Before conversion (mixed scripts example)original_text = "你好世界,這是一個測試文件。我们正在进行语音识别。"print(f"Original (mixed): {original_text}")
# After conversionconverter = opencc.OpenCC('t2s.json')simplified_text = converter.convert(original_text)print(f"Simplified: {simplified_text}")# Output: 你好世界,这是一个测试文件。我们正在进行语音识别。C. Add Comprehensive Error Handling
Section titled “C. Add Comprehensive Error Handling”try: transcript = aai.Transcriber(config=config).transcribe(audio_file)
if transcript.status == "error": raise RuntimeError(f"Transcription failed: {transcript.error}")
converter = opencc.OpenCC('t2s.json') converted_text = converter.convert(transcript.text)
except FileNotFoundError: print("Audio file not found. Please check the file path.")except Exception as e: print(f"Conversion error: {e}")D. Add Troubleshooting Section
Section titled “D. Add Troubleshooting Section”## Troubleshooting
### Common Issues
**Problem**: `ImportError: No module named 'opencc'`**Solution**: Install OpenCC using `pip install opencc-python-reimplemented` if the standard package fails
**Problem**: Conversion output looks incorrect**Solution**: Verify you're using the correct conversion config:- `t2s.json` for Traditional → Simplified- `s2t.json` for Simplified → Traditional
**Problem**: Some characters aren't converting**Solution**: These may be variant characters or proper nouns that OpenCC preserves intentionallyE. Restructure for Better Flow
Section titled “E. Restructure for Better Flow”# Recommended new structure:1. Introduction (with concrete examples)2. Prerequisites3. When to Use This Guide4. Installation5. Quick Start6. Detailed Implementation7. Advanced Usage (batch processing, different configs)8. Troubleshooting9. Limitations & Alternatives10. Next StepsF. Add Practical Enhancements
Section titled “F. Add Practical Enhancements”# Batch processing exampledef process_chinese_audio_files(file_paths, output_format='simplified'): """Process multiple Chinese audio files and convert script format."""
config_map = { 'simplified': 't2s.json', 'traditional': 's2t.json' }
results = [] converter = opencc.OpenCC(config_map[output_format]) transcriber = aai.Transcriber(aai.TranscriptionConfig(language_code="zh"))
for file_path in file_paths: try: transcript = transcriber.transcribe(file_path) if transcript.status == "completed": converted_text = converter.convert(transcript.text) results.append({ 'file': file_path, 'text': converted_text, 'status': 'success' }) except Exception as e: results.append({ 'file': file_path, 'error': str(e), 'status': 'failed' })
return results🎯 User Experience Improvements
Section titled “🎯 User Experience Improvements”- Add estimated processing times: “Typical processing time: 1-2x audio length”
- Include cost information: Link to pricing for Chinese transcription
- Provide sample audio files: Let users test immediately
- Add visual examples: Screenshots showing mixed vs. converted text
- Link to related guides: Other language processing tutorials
📊 Priority Implementation Order
Section titled “📊 Priority Implementation Order”- High Priority: Add troubleshooting, improve error handling, show real examples
- Medium Priority: Restructure content, add batch processing, include prerequisites
- Lower Priority: Advanced configurations, performance optimization tips
This documentation has good bones but needs significant enhancement to meet professional technical documentation standards and improve user success rates.