Skip to content

Feedback: guides-traditional_simplified_chinese

Original URL: https://www.assemblyai.com/docs/guides/traditional_simplified_chinese
Category: guides
Generated: 05/08/2025, 4:35:34 pm


Generated: 05/08/2025, 4:35:33 pm

Technical Documentation Analysis & Improvement Recommendations

Section titled “Technical Documentation Analysis & Improvement Recommendations”

This documentation provides a functional solution but has several areas for improvement in clarity, completeness, and user experience. Here’s my detailed analysis:

  • No prerequisites section: Users don’t know what Python version is required
  • No OpenCC configuration details: Limited explanation of available conversion options
  • No troubleshooting section: Common errors and solutions are missing
  • No performance considerations: File size limits, processing time expectations
  • Vague problem description: “mixes both Simplified and Traditional Chinese characters” needs concrete examples
  • Missing context: When would users choose one script over another?
  • Incomplete error handling: Only covers transcription errors, not conversion errors
  • Show actual mixed output: Display real transcript text before/after conversion
  • Multiple use cases: Different audio types (interviews, lectures, phone calls)
  • Batch processing example: Most users will process multiple files
  • Redundant code: Quickstart and step-by-step repeat the same information
  • Missing sections: Use cases, limitations, alternatives
  • Poor information hierarchy: Important details buried in code comments
## Prerequisites
- Python 3.7 or higher
- AssemblyAI API key ([get one here](link))
- Audio file in supported format (MP3, WAV, M4A, etc.)
## When to Use This Guide
Use this approach when:
- Your transcribed Chinese text contains mixed scripts
- You need consistent formatting for downstream processing
- You're building applications for specific Chinese-speaking regions
## Limitations
- Conversion is character-based, not context-aware
- May not handle specialized terminology perfectly
- Requires post-processing step (adds latency)
# Before conversion (mixed scripts example)
original_text = "你好世界,這是一個測試文件。我们正在进行语音识别。"
print(f"Original (mixed): {original_text}")
# After conversion
converter = opencc.OpenCC('t2s.json')
simplified_text = converter.convert(original_text)
print(f"Simplified: {simplified_text}")
# Output: 你好世界,这是一个测试文件。我们正在进行语音识别。
try:
transcript = aai.Transcriber(config=config).transcribe(audio_file)
if transcript.status == "error":
raise RuntimeError(f"Transcription failed: {transcript.error}")
converter = opencc.OpenCC('t2s.json')
converted_text = converter.convert(transcript.text)
except FileNotFoundError:
print("Audio file not found. Please check the file path.")
except Exception as e:
print(f"Conversion error: {e}")
## Troubleshooting
### Common Issues
**Problem**: `ImportError: No module named 'opencc'`
**Solution**: Install OpenCC using `pip install opencc-python-reimplemented` if the standard package fails
**Problem**: Conversion output looks incorrect
**Solution**: Verify you're using the correct conversion config:
- `t2s.json` for Traditional → Simplified
- `s2t.json` for Simplified → Traditional
**Problem**: Some characters aren't converting
**Solution**: These may be variant characters or proper nouns that OpenCC preserves intentionally
# Recommended new structure:
1. Introduction (with concrete examples)
2. Prerequisites
3. When to Use This Guide
4. Installation
5. Quick Start
6. Detailed Implementation
7. Advanced Usage (batch processing, different configs)
8. Troubleshooting
9. Limitations & Alternatives
10. Next Steps
# Batch processing example
def process_chinese_audio_files(file_paths, output_format='simplified'):
"""Process multiple Chinese audio files and convert script format."""
config_map = {
'simplified': 't2s.json',
'traditional': 's2t.json'
}
results = []
converter = opencc.OpenCC(config_map[output_format])
transcriber = aai.Transcriber(aai.TranscriptionConfig(language_code="zh"))
for file_path in file_paths:
try:
transcript = transcriber.transcribe(file_path)
if transcript.status == "completed":
converted_text = converter.convert(transcript.text)
results.append({
'file': file_path,
'text': converted_text,
'status': 'success'
})
except Exception as e:
results.append({
'file': file_path,
'error': str(e),
'status': 'failed'
})
return results
  1. Add estimated processing times: “Typical processing time: 1-2x audio length”
  2. Include cost information: Link to pricing for Chinese transcription
  3. Provide sample audio files: Let users test immediately
  4. Add visual examples: Screenshots showing mixed vs. converted text
  5. Link to related guides: Other language processing tutorials
  1. High Priority: Add troubleshooting, improve error handling, show real examples
  2. Medium Priority: Restructure content, add batch processing, include prerequisites
  3. Lower Priority: Advanced configurations, performance optimization tips

This documentation has good bones but needs significant enhancement to meet professional technical documentation standards and improve user success rates.