Feedback: speech-to-text-pre-recorded-audio
Documentation Feedback
Section titled “Documentation Feedback”Original URL: https://www.assemblyai.com/docs/speech-to-text/pre-recorded-audio
Category: speech-to-text
Generated: 05/08/2025, 4:23:36 pm
Claude Sonnet 4 Feedback
Section titled “Claude Sonnet 4 Feedback”Generated: 05/08/2025, 4:23:35 pm
Technical Documentation Analysis & Feedback
Section titled “Technical Documentation Analysis & Feedback”Overall Assessment
Section titled “Overall Assessment”This documentation provides good basic functionality but has several gaps that could frustrate users. The multi-language code examples are excellent, but the documentation lacks depth in critical areas.
🚨 Critical Issues
Section titled “🚨 Critical Issues”1. Missing Prerequisites & Setup
Section titled “1. Missing Prerequisites & Setup”Problem: Users jump straight into code without understanding requirements.
Solution: Add a “Before You Start” section:
## Before You Start
### Prerequisites- Valid AssemblyAI API key ([Get one here](link))- Audio file in supported format (see [Supported Formats](#supported-formats))- Programming environment set up with required dependencies
### Required Dependencies- **Python**: `pip install assemblyai requests`- **JavaScript**: `npm install assemblyai axios fs-extra`- **C#**: NuGet packages for HTTP client and JSON handling2. Incomplete Audio Format Information
Section titled “2. Incomplete Audio Format Information”Problem: No information about supported formats, file size limits, or quality requirements.
Solution: Add comprehensive format section:
## Supported Audio Formats
### File Formats- **Audio**: MP3, WAV, FLAC, M4A, AAC, OGG- **Video**: MP4, MOV, AVI, WMV (audio will be extracted)
### Specifications- **Maximum file size**: 2GB- **Sample rate**: 8kHz - 48kHz (16kHz+ recommended)- **Bit depth**: 16-bit or 24-bit- **Channels**: Mono or stereo
### Quality Guidelines- Use lossless formats (WAV, FLAC) for best accuracy- Ensure clear audio with minimal background noise- Avoid heavily compressed files when possible🔧 Structure & Navigation Issues
Section titled “🔧 Structure & Navigation Issues”3. Poor Information Hierarchy
Section titled “3. Poor Information Hierarchy”Current flow: Introduction → Code → Output → API Reference
Improved structure:
# Pre-Recorded Audio Transcription
## OverviewBrief description and use cases
## Before You StartPrerequisites, setup, supported formats
## Quick StartSimple example with explanation
## Step-by-Step GuideDetailed walkthrough of the process
## Configuration OptionsAll available parameters explained
## Advanced ExamplesComplex scenarios and best practices
## TroubleshootingCommon issues and solutions
## API ReferenceLink to detailed API docs📝 Content Gaps
Section titled “📝 Content Gaps”4. Missing Configuration Explanation
Section titled “4. Missing Configuration Explanation”Problem: The speech_model parameter appears without explanation.
Solution: Add configuration section:
## Configuration Options
### Speech Model Selection```python# Available modelsconfig = aai.TranscriptionConfig( speech_model=aai.SpeechModel.slam_1, # Latest model (recommended) # speech_model=aai.SpeechModel.best, # Highest accuracy, slower # speech_model=aai.SpeechModel.nano, # Fastest, lower accuracy)| Model | Speed | Accuracy | Best For |
|---|---|---|---|
| slam-1 | Fast | High | General use (recommended) |
| best | Slow | Highest | Critical accuracy needs |
| nano | Fastest | Good | Real-time applications |
Additional Options
Section titled “Additional Options”config = aai.TranscriptionConfig( speech_model=aai.SpeechModel.slam_1, language_detection=True, # Auto-detect language punctuate=True, # Add punctuation format_text=True, # Format numbers, dates, etc. speaker_labels=True, # Enable speaker diarization)### 5. **No Error Handling Guide****Problem**: Limited error handling examples.
**Solution**: Add comprehensive error handling:```markdown## Error Handling
### Common Errors and Solutions
#### Upload Errors```pythontry: transcript = aai.Transcriber().transcribe(audio_file)except aai.TranscriptionError as e: if "file not found" in str(e).lower(): print("❌ Audio file not found. Check the file path.") elif "unsupported format" in str(e).lower(): print("❌ Unsupported audio format. See supported formats above.") elif "file too large" in str(e).lower(): print("❌ File exceeds 2GB limit. Please compress or split the file.")API Errors
Section titled “API Errors”if transcript.status == "error": error_message = transcript.error if "insufficient credit" in error_message.lower(): print("❌ Insufficient credits. Please check your account balance.") elif "invalid api key" in error_message.lower(): print("❌ Invalid API key. Please check your credentials.") else: print(f"❌ Transcription failed: {error_message}")## 🎯 User Experience Improvements
### 6. **Add Processing Time Expectations**```markdown## What to Expect
### Processing Time- **Typical**: 15-30% of audio duration- **Example**: 10-minute audio = ~3-5 minutes processing- **Factors**: File size, audio quality, selected model
### Status UpdatesThe transcription goes through these stages:1. `queued` - Waiting to be processed2. `processing` - Currently being transcribed3. `completed` - Ready with results4. `error` - Something went wrong7. Improve Code Examples
Section titled “7. Improve Code Examples”Problem: Examples lack context and explanation.
Better approach:
## Step-by-Step Walkthrough
### Step 1: Upload Your Audio File```python# Option 1: Local fileaudio_file = "./my-recording.mp3"
# Option 2: Remote URL (skip upload step)# audio_file = "https://example.com/audio.mp3"
transcript = aai.Transcriber().transcribe(audio_file)What happens here: AssemblyAI automatically uploads your local file to secure cloud storage and returns a temporary URL for processing.
Step 2: Configure Transcription Settings
Section titled “Step 2: Configure Transcription Settings”config = aai.TranscriptionConfig( speech_model=aai.SpeechModel.slam_1, # Use latest model language_detection=True, # Auto-detect language speaker_labels=True, # Identify different speakers)
transcript = aai.Transcriber(config=config).transcribe(audio_file)Step 3: Handle the Results
Section titled “Step 3: Handle the Results”if transcript.status == "completed": print("✅ Transcription successful!") print(f"Text: {transcript.text}")
# Access additional features if enabled if hasattr(transcript, 'speaker_labels'): for utterance in transcript.utterances: print(f"Speaker {utterance.speaker}: {utterance.text}")
elif transcript.status == "error": print(f"❌ Error: {transcript.error}")### 8. **Add Practical Examples**```markdown## Common Use Cases
### Meeting Transcription```pythonconfig = aai.TranscriptionConfig( speech_model=aai.SpeechModel.slam_1, speaker_labels=True, # Identify speakers auto_chapters=True, # Break into topics sentiment_analysis=True, # Analyze tone)Podcast Processing
Section titled “Podcast Processing”config = aai.TranscriptionConfig( speech_model=aai.SpeechModel.slam_1, auto_chapters=True, # Generate episode segments entity_detection=True, # Extract names, places, etc. content_safety=True, # Flag sensitive content)## 🐛 Technical Issues
### 9. **Inconsistent Parameter Names****Problem**: `slam_1` vs `slam-1` inconsistency across examples.
**Solution**: Standardize and document both REST API and SDK formats:```markdown## Parameter Reference
| Feature | SDK Format | REST API Format ||---------|------------|-----------------|| Speech Model | `aai.SpeechModel.slam_1` | `"slam-1"`
---