Skip to content

Feedback: speech-to-text-pre-recorded-audio

Original URL: https://www.assemblyai.com/docs/speech-to-text/pre-recorded-audio
Category: speech-to-text
Generated: 05/08/2025, 4:23:36 pm


Generated: 05/08/2025, 4:23:35 pm

Technical Documentation Analysis & Feedback

Section titled “Technical Documentation Analysis & Feedback”

This documentation provides good basic functionality but has several gaps that could frustrate users. The multi-language code examples are excellent, but the documentation lacks depth in critical areas.

Problem: Users jump straight into code without understanding requirements.

Solution: Add a “Before You Start” section:

## Before You Start
### Prerequisites
- Valid AssemblyAI API key ([Get one here](link))
- Audio file in supported format (see [Supported Formats](#supported-formats))
- Programming environment set up with required dependencies
### Required Dependencies
- **Python**: `pip install assemblyai requests`
- **JavaScript**: `npm install assemblyai axios fs-extra`
- **C#**: NuGet packages for HTTP client and JSON handling

Problem: No information about supported formats, file size limits, or quality requirements.

Solution: Add comprehensive format section:

## Supported Audio Formats
### File Formats
- **Audio**: MP3, WAV, FLAC, M4A, AAC, OGG
- **Video**: MP4, MOV, AVI, WMV (audio will be extracted)
### Specifications
- **Maximum file size**: 2GB
- **Sample rate**: 8kHz - 48kHz (16kHz+ recommended)
- **Bit depth**: 16-bit or 24-bit
- **Channels**: Mono or stereo
### Quality Guidelines
- Use lossless formats (WAV, FLAC) for best accuracy
- Ensure clear audio with minimal background noise
- Avoid heavily compressed files when possible

Current flow: Introduction → Code → Output → API Reference

Improved structure:

# Pre-Recorded Audio Transcription
## Overview
Brief description and use cases
## Before You Start
Prerequisites, setup, supported formats
## Quick Start
Simple example with explanation
## Step-by-Step Guide
Detailed walkthrough of the process
## Configuration Options
All available parameters explained
## Advanced Examples
Complex scenarios and best practices
## Troubleshooting
Common issues and solutions
## API Reference
Link to detailed API docs

Problem: The speech_model parameter appears without explanation.

Solution: Add configuration section:

## Configuration Options
### Speech Model Selection
```python
# Available models
config = aai.TranscriptionConfig(
speech_model=aai.SpeechModel.slam_1, # Latest model (recommended)
# speech_model=aai.SpeechModel.best, # Highest accuracy, slower
# speech_model=aai.SpeechModel.nano, # Fastest, lower accuracy
)
ModelSpeedAccuracyBest For
slam-1FastHighGeneral use (recommended)
bestSlowHighestCritical accuracy needs
nanoFastestGoodReal-time applications
config = aai.TranscriptionConfig(
speech_model=aai.SpeechModel.slam_1,
language_detection=True, # Auto-detect language
punctuate=True, # Add punctuation
format_text=True, # Format numbers, dates, etc.
speaker_labels=True, # Enable speaker diarization
)
### 5. **No Error Handling Guide**
**Problem**: Limited error handling examples.
**Solution**: Add comprehensive error handling:
```markdown
## Error Handling
### Common Errors and Solutions
#### Upload Errors
```python
try:
transcript = aai.Transcriber().transcribe(audio_file)
except aai.TranscriptionError as e:
if "file not found" in str(e).lower():
print("❌ Audio file not found. Check the file path.")
elif "unsupported format" in str(e).lower():
print("❌ Unsupported audio format. See supported formats above.")
elif "file too large" in str(e).lower():
print("❌ File exceeds 2GB limit. Please compress or split the file.")
if transcript.status == "error":
error_message = transcript.error
if "insufficient credit" in error_message.lower():
print("❌ Insufficient credits. Please check your account balance.")
elif "invalid api key" in error_message.lower():
print("❌ Invalid API key. Please check your credentials.")
else:
print(f"❌ Transcription failed: {error_message}")
## 🎯 User Experience Improvements
### 6. **Add Processing Time Expectations**
```markdown
## What to Expect
### Processing Time
- **Typical**: 15-30% of audio duration
- **Example**: 10-minute audio = ~3-5 minutes processing
- **Factors**: File size, audio quality, selected model
### Status Updates
The transcription goes through these stages:
1. `queued` - Waiting to be processed
2. `processing` - Currently being transcribed
3. `completed` - Ready with results
4. `error` - Something went wrong

Problem: Examples lack context and explanation.

Better approach:

## Step-by-Step Walkthrough
### Step 1: Upload Your Audio File
```python
# Option 1: Local file
audio_file = "./my-recording.mp3"
# Option 2: Remote URL (skip upload step)
# audio_file = "https://example.com/audio.mp3"
transcript = aai.Transcriber().transcribe(audio_file)

What happens here: AssemblyAI automatically uploads your local file to secure cloud storage and returns a temporary URL for processing.

config = aai.TranscriptionConfig(
speech_model=aai.SpeechModel.slam_1, # Use latest model
language_detection=True, # Auto-detect language
speaker_labels=True, # Identify different speakers
)
transcript = aai.Transcriber(config=config).transcribe(audio_file)
if transcript.status == "completed":
print("✅ Transcription successful!")
print(f"Text: {transcript.text}")
# Access additional features if enabled
if hasattr(transcript, 'speaker_labels'):
for utterance in transcript.utterances:
print(f"Speaker {utterance.speaker}: {utterance.text}")
elif transcript.status == "error":
print(f"❌ Error: {transcript.error}")
### 8. **Add Practical Examples**
```markdown
## Common Use Cases
### Meeting Transcription
```python
config = aai.TranscriptionConfig(
speech_model=aai.SpeechModel.slam_1,
speaker_labels=True, # Identify speakers
auto_chapters=True, # Break into topics
sentiment_analysis=True, # Analyze tone
)
config = aai.TranscriptionConfig(
speech_model=aai.SpeechModel.slam_1,
auto_chapters=True, # Generate episode segments
entity_detection=True, # Extract names, places, etc.
content_safety=True, # Flag sensitive content
)
## 🐛 Technical Issues
### 9. **Inconsistent Parameter Names**
**Problem**: `slam_1` vs `slam-1` inconsistency across examples.
**Solution**: Standardize and document both REST API and SDK formats:
```markdown
## Parameter Reference
| Feature | SDK Format | REST API Format |
|---------|------------|-----------------|
| Speech Model | `aai.SpeechModel.slam_1` | `"slam-1"`
---