Skip to content

Feedback: speech-to-text-pre-recorded-audio-transcript-status

Original URL: https://www.assemblyai.com/docs/speech-to-text/pre-recorded-audio/transcript-status
Category: speech-to-text
Generated: 05/08/2025, 4:24:13 pm


Generated: 05/08/2025, 4:24:12 pm

Technical Documentation Analysis & Feedback

Section titled “Technical Documentation Analysis & Feedback”

This documentation covers the essential functionality but has several areas for improvement in clarity, completeness, and user experience. Here’s my detailed analysis:

Problem: Users don’t understand the typical progression of statuses or timing expectations.

Solution: Add a status flow diagram and timing information:

## Status Flow
Transcripts typically follow this progression:
`queued``processing``completed` (or `error`)
**Typical Processing Times:**
- Queuing: Usually < 30 seconds
- Processing: ~25% of audio duration (e.g., 10-minute file takes ~2.5 minutes)
- Large files (>1GB) may take longer

Problem: Code examples don’t show comprehensive error handling patterns.

Solution: Add dedicated error handling section:

## Common Error Scenarios
### Checking for Specific Error Types
```python
if transcript.status == aai.TranscriptStatus.error:
error_msg = transcript.error
if "unsupported format" in error_msg.lower():
print("Convert your file to MP3, WAV, or M4A format")
elif "unreachable" in error_msg.lower():
print("Check that your audio URL is publicly accessible")
elif "missing audio" in error_msg.lower():
print("File appears to be corrupted or contains no audio")
else:
print(f"Transcription failed: {error_msg}")

Problem: Only shows polling examples, missing webhook alternatives.

Solution: Add webhook section:

## Alternative: Using Webhooks
Instead of polling, you can receive status updates via webhooks:
```python
config = aai.TranscriptionConfig(
webhook_url="https://your-app.com/webhook"
)
transcript = aai.Transcriber().transcribe(audio_file, config)

Problem: No guidance on polling frequency or rate limits.

Solution: Add best practices section:

## Polling Best Practices
- Start with 3-second intervals (as shown in examples)
- For very long files (>1 hour), consider 10-second intervals
- Maximum polling rate: 1 request per second
- Implement exponential backoff for production systems

Problem: Different languages use different error handling approaches.

Solution: Standardize error handling patterns across all languages and add timeout handling:

# Python - Add timeout example
import time
start_time = time.time()
timeout = 300 # 5 minutes
while True:
if time.time() - start_time > timeout:
raise TimeoutError("Transcription timeout after 5 minutes")
# ... existing polling code

Problem: Examples only show basic success/error cases.

Solution: Add real-world scenarios:

## Production-Ready Example
```python
def transcribe_with_retry(audio_file, max_retries=3):
for attempt in range(max_retries):
try:
transcript = aai.Transcriber().transcribe(audio_file)
if transcript.status == aai.TranscriptStatus.error:
if "server error" in transcript.error.lower() and attempt < max_retries - 1:
print(f"Server error, retrying... (attempt {attempt + 1})")
continue
else:
raise Exception(f"Transcription failed: {transcript.error}")
return transcript
except Exception as e:
if attempt == max_retries - 1:
raise
time.sleep(2 ** attempt) # Exponential backoff

Current structure is unclear. Reorganize as:

# Transcript Status
## Overview
[Current status table]
## Status Flow & Timing
[New section with progression and timing info]
## Checking Status
### Using Polling (Recommended for testing)
[Current polling examples]
### Using Webhooks (Recommended for production)
[New webhook examples]
## Error Handling
### Understanding Error Types
[Enhanced error explanations]
### Retry Strategies
[Production-ready retry examples]
## Troubleshooting
[Enhanced FAQ section]
> 💡 **Quick Tip**: Use webhooks instead of polling for production applications to reduce API calls and improve efficiency.
> ⚠️ **Important**: Always implement timeout handling to prevent infinite polling loops.

Replace the single accordion with comprehensive troubleshooting:

## Troubleshooting
### Status Stuck on "queued"
- **Cause**: High API load or large file size
- **Solution**: Wait longer or contact support if queued >10 minutes
### Status Stuck on "processing"
- **Cause**: Very long audio files or complex audio
- **Solution**: Processing time is ~25% of audio length; wait proportionally
### "400 Bad Request" Errors
- **Cause**: Invalid request format or missing parameters
- **Solutions**:
- Verify API key format: `headers = {"authorization": "YOUR_API_KEY"}`
- Check required fields in request body
- Validate audio URL accessibility
### "Unsupported format" Errors
- **Supported formats**: MP3, MP4, WAV, M4A, CAF, AIFF, AU, FLAC, OGG, AMR, 3GP
- **Solution**: Convert file using tools like FFmpeg

Current code lacks explanatory comments. Add:

# Poll every 3 seconds to check transcription status
# Avoid polling more frequently to prevent rate limiting
time.sleep(3)

Add example of actual API responses:

## Status Response Format
```json
{
"id": "transcript_123",
"status": "processing",
"created": "2024-01-15T10:30:00Z",
"completed": null,
"error": null
}

Add “See Also” section:

## See Also
- [Submitting Files for Transcription](../submitting-files)
- [Webhook Configuration](../webhooks)
- [API Rate Limits](../rate-limits)
- [Supported File Formats](../file-formats)

These improvements will significantly enhance user understanding, reduce support requests, and provide a more professional developer experience.